首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

In large metropolitan areas, public transit is a major mode choice of commuters for their daily travel, which has an important role in relieving congestion on transportation corridors. The purpose of this study is to develop a model which optimizes service patterns (SPs) and frequencies that yield minimum cost transit operation. Considering a general transit route with given stops and origin-destination demand, the proposed model consists of an objective total cost function and a set of constraints to ensure frequency conservation and sufficient capacity subject to operable fleet size. A numerical example is provided to demonstrate the effectiveness of the developed model, in which the demand and facility data of a rail transit route were given. Results show that the proposed model can be applied to optimize integrated SPs and headways that significantly reduce the total cost, while the resulting performance indicators are generated.  相似文献   

2.
In the past decade, many studies have explored the relationship between travelers’ travel mode and their trip satisfaction. Various characteristics of the chosen travel modes have been found to influence trip experiences; however, apart from the chosen modes, travelers’ variability in mode use and their ability to vary have not been investigated in the trip satisfaction literature. This current paper presents an analysis of commuting trip satisfaction in Beijing with a particular focus on the influence of commuters’ multimodal behavior on multiple workdays and their modal flexibility for each commuting trip. Consistent with previous studies, we find that commuting trips by active modes are the most satisfying, followed by trips by car and public transport. In Beijing, public transport dominates. Urban residents increasingly acquire automobiles, but a strict vehicle policy has been implemented to restrict the use of private cars on workdays. In this comparatively constrained context for transport mode choice, we find a significant portion of commuters showing multimodal behavior. We also find that multimodal commuters tend to feel less satisfied with trips by alternative modes compared with monomodal commuters, which is probably related to their undesirable deviation from habitual transport modes. Furthermore, the relationship between modal flexibility and trip satisfaction is not linear, but U-shaped. Commuters with high flexibility are generally most satisfied because there is a higher possibility for them to choose their mode of transport out of preference. Very inflexible commuters can also reach a relatively high satisfaction level, however, which is probably caused by their lower expectations beforehand and the fact that they did not have an alternative to regret in trip satisfaction assessments.  相似文献   

3.
This paper extends Vickrey’s (1969) commute problem for commuters wishing to pass a bottleneck for both cars and transit that share finite road capacity. In addition to this more general framework considering two modes, the paper focuses on the evening rush, when commuters travel from work to home. Commuters choose which mode to use and when to travel in order to minimize the generalized cost of their own trips, including queueing delay and penalties for deviation from a preferred schedule of arrival and departure to and from work. The user equilibrium for the isolated morning and evening commutes are shown to be asymmetric because the schedule penalty in the morning is the difference between the departure and wished curves, and the schedule penalty in the evening is the difference between the arrival and wished curves. It is shown that the system optimum in the morning and evening peaks are symmetric because queueing delay is eliminated and the optimal arrival curves are the same as the departure curves.The paper then considers both the morning and evening peaks together for a single mode bottleneck (all cars) with identical travelers that share the same wished times. For a schedule penalty function of the morning departure and evening arrival times that is positive definite and has certain properties, a user equilibrium is shown to exist in which commuters travel in the same order in both peaks. The result is used to illustrate the user equilibrium for two cases: (i) commuters have decoupled schedule preferences in the morning and evening and (ii) commuters must work a fixed shift length but have flexibility when to start. Finally, a special case is considered with cars and transit: commuters have the same wished order in the morning and evening peaks. Commuters must use the same mode in both directions, and the complete user equilibrium solution reveals the number of commuters using cars and transit and the period in the middle of each rush when transit is used.  相似文献   

4.
More and more commuters are beginning to favour public transportation. Fast and convenient park and ride (PnR) services provided by public transportation authorities are the result of changes of household demographics and household, increasing fuel prices and a focus on environmental sustainability. However, lack of parking spaces in PnR facilities creates a major bottleneck to this service. The aim of this research is to develop a location-based service (LBS) application to help PnR users choose the best train station to use to reach their destination using a multicriteria decision making model. A fuzzy logic method is used to estimate parking availability when a user is estimated to arrive at a PnR facility. Two surveys are conducted to collect traffic flow, travel behaviour and service quality data at four selected Perth Western Australia train stations. With the proposed approach and survey data, a prototype of LBS application, Station Finder, was developed using the Android SDK 4.0 and Google API 16. This application is a useful and practical tool to save travel cost and time of PnR users’.  相似文献   

5.
Transit development is one planning strategy that seeks to partially overcome limitations of low-density single use car oriented development styles. While many studies focus on how residential proximity to transit influences the travel behaviors of individuals, the effect of workplace proximity to transit is less understood. This paper asks, does working near a light rail transit station influence the travel behaviors of workers differently than workers living near a station? We begin by examining workers’ commute mode based on their residential and workplace proximity to transit station areas. Next, we analyze the ways in which personal travel behaviors differ between those who drive to work and those who do not. The data came from a 2009 travel behavior survey in the Denver, Colorado metropolitan area, which contains 8000 households, 16,000 individuals, and nearly 80,000 trips. We measure sustainable travel behaviors as reduced mileage, reduced number of trips, and increased use of non-car transportation. The results of this study indicate that living near a transit station area by itself does not increase the likelihood of using non-car modes for work commutes. But if the destination (work) is near a transit station area, persons are less likely to drive a car to work. People who both live and work in a transit station area are less likely to use a car and more likely to take non-car modes for both work and non-work (personal) trips. Especially for persons who work near a transit station area, the measures of personal trips and distances show a higher level of mobility for non-car commuters than car commuters – that is, more trips and more distant trips. The use of non-car modes for personal trips is most likely to occur by non-car commuters, regardless of their transit station area relationship.  相似文献   

6.
By estimating multinomial choice models, this paper examines the relationship between travel mode choice and attributes of the local physical environment such as topography, sidewalk availability, residential density, and the presence of walking and cycling paths. Data for student and staff commuters to the University of North Carolina in Chapel Hill are used to illustrate the relationship between mode choice and the objectively measured environmental attributes, while accounting for typical modal characteristics such as travel time, access time, and out-of-pocket cost. Results suggest that jointly the four attributes of the local physical environment make significant marginal contributions to explaining travel mode choice. In particular, the estimates reveal that local topography and sidewalk availability are significantly associated with the attractiveness of non-motorized modes. Point elasticities are provided and recommendations given regarding the importance of incorporating non-motorized modes into local transportation planning and in the study of how the built environment influences travel behavior.  相似文献   

7.
This paper has two major components. The first one is the day-to-day evolution of travelers’ mode and route choices in a bi-modal transportation system where traffic information (predicted travel cost) is available to travelers. The second one is a public transit operator adjusting or adapting its service over time (from period to period) based on observed system conditions. Particularly, we consider that on each day both travelers’ past travel experiences and the predicted travel cost (based on information provision) can affect travelers’ perceptions of different modes and routes, and thus affect their mode choice and/or route choice accordingly. This evolution process from day to day is formulated by a discrete dynamical model. The properties of such a dynamical model are then analyzed, including the existence, uniqueness and stability of the fixed point. Most importantly, we show that the predicted travel cost based on information provision may help stabilize the dynamical system even if it is not fully accurate. Given the day-to-day traffic evolution, we then model an adaptive transit operator who can adjust frequency and fare for public transit from period to period (each period contains a certain number of days). The adaptive frequency and fare in one period are determined from the realized transit demands and transit profits of the previous periods, which is to achieve a (locally) maximum transit profit. The day-to-day and period-to-period models and their properties are also illustrated by numerical experiments.  相似文献   

8.
Idei  Rika  Kato  Hironori 《Transportation》2020,47(3):1415-1438

This study aimed at identifying influencing factors in an individual’s choice of health service facility and transportation mode to the facility, using two datasets: one collected through face-to-face interviews held between February and March 2016, containing responses from 258 local residents, and the other collected from 45 residents in the follow-up survey in December 2016. The study area was located in rural Cambodia, where road conditions were recently improved and a health sector policy was implemented to assist poor people in accessing to health services. An empirical analysis was carried out using nested logit models, consisting of two choices of three travel modes (private, shared, or walking) and two types of public health service facilities (health center or referral hospital). The results revealed the following: (1) individuals in households with motorcycles tend to visit health service facilities using private travel modes, whereas individuals in households without their own transportation tend to visit health service facilities using shared travel modes or on foot, and (2) travel distance between individuals’ houses and the selected facilities likely discourages people from visiting referral hospitals, where a variety of health services are available, but does not affect the choice of health centers, offering limited health services while being located closer to residential areas. These findings suggested the need to equip health centers with more functions as health service providers and to operationalize public transportation services for those who cannot afford to visit referral hospitals, which would enable people to receive necessary health services more conveniently.

  相似文献   

9.
This paper assesses the demand for a flexible, demand-adaptive transit service, using the Chicago region as an example. We designed and implemented a stated-preference survey in order to (1) identify potential users of flexible transit, and (2) inform the service design of the flexible transit mode. Multinomial logit, mixed-logit, and panel mixed-logit choice models were estimated using the data obtained from the survey. The survey instrument employed a dp-efficient design and the Google Maps API to capture precise origins and destinations in order to create realistic choice scenarios. The stated-preference experiments offered respondents a choice between traditional transit, car, and a hypothetical flexible transit mode. Wait time, access time, travel time, service frequency, cost, and number of transfers varied across the choice scenarios. The choice model results indicate mode-specific values of in-vehicle travel time ranging between $16.3 per hour (car) and $21.1 per hour (flexible transit). The estimated value of walking time to transit is $25.9 per hour. The estimated value of waiting time at one’s point of origin for a flexible transit vehicle is $11.3 per hour; this value is significantly lower than the disutility typically associated with waiting at a transit stop/station indicating that the ‘at-home’ pick-up option of flexible transit is a highly desirable feature. The choice model results also indicate that respondents who use active-transport modes or public transit for their current commute trip, or are bikeshare members, were significantly more likely to choose flexible and traditional transit than car commuters in the choice experiments. The implications of these and other relevant model results for the design and delivery of flexible, technology-enabled services are discussed.  相似文献   

10.
This paper examines the potential impact of autonomous vehicles on commuters’ value of travel time (VOTT). In particular, we focus on the effect on auto commuters in small and medium-sized metropolitan areas, concerning the spatial variability across urban areas, suburbs, and rural areas. We design a stated choice experiment to elicit potential changes in 1,881 auto commuters’ valuation of travel time in autonomous vehicles and apply a mixed logit model to quantify the changes in the value of travel time if taking autonomous vehicles. The results of this study suggest that the effect of autonomous vehicles on the VOTT is spatially differentiated. We find that riding in a private autonomous vehicle reduces the commuting VOTT of suburban, urban, and rural drivers by 32%, 24%, and 18%, respectively, compared to 14%, 13%, and 8% for riding in a shared autonomous vehicle. Finally, we discuss the implications of these lower values of time on transportation and land use planning.  相似文献   

11.
A latent class model is developed to accommodate preference heterogeneity across commuters with respect to their mode choice between electric bike, private car, and public bus within the context of China. A three-segment solution – ‘electric bike individuals’, ‘private car addicts’, and ‘public bus enthusiasts’ – is identified, each characterized by heterogeneous preferences regarding specific mode attributes and unique socio-demographic profile. The choice model confirms the determinative effects of perceived alternative attributes on commuting mode choice, while the traditionally used objective attributes – travel time and cost – are found to have relatively small influences. The membership model provides solid explanations for these segment-specific preferences. This study provides a better understanding of the nature of mode choice behavior, which can be useful for strategies tailored to a specific segment in order to promote the use of sustainable transport modes.  相似文献   

12.
Transportation is an important source of greenhouse gas (GHG) emissions. In this paper, we develop a bi-level model for GHG emission charge based on continuous distribution of the value of time (VOT) for travelers. In the bi-level model framework, a policy maker (as the leader) seeks an optimal emission charge scheme, with tolls differentiated across travel modes (e.g., bus, motorcycles, and cars), to achieve a given GHG reduction target by shifting the proportions of travelers taking different modes. In response, travelers (as followers) will adjust their travel modes to minimize their total travel cost. The resulting mode shift, hence the outcome of the emission charge policy, depends on travelers’ VOT distribution. For the solution of the bi-level model, we integrate a differential evolution algorithm for the upper level and the “all or nothing” traffic assignment for the lower level. Numerical results from our analysis suggest important policy implications: (1) in setting the optimal GHG emission charge scheme for the design of transportation GHG emission reduction targets, policy makers need to be equipped with rigorous understanding of travelers’ VOT distribution and the tradeoffs between emission reduction and system efficiency; and (2) the optimal emission charge scheme in a city depends significantly on the average value of travelers’ VOT distribution—the optimal emission charge can be designed and implemented in consistency with rational travel flows. Further sensitivity analysis considering various GHG reduction targets and different VOT distributions indicate that plausible emission toll schemes that encourage travelers to choose greener transportation modes can be explored as an efficient policy instrument for both transportation network performance improvement and GHG reduction.  相似文献   

13.
This paper examines the dynamic user equilibrium of the morning commute problem in the presence of ridesharing program. Commuters simultaneously choose departure time from home and commute mode among three roles: solo driver, ridesharing driver, and ridesharing rider. Considering the congestion evolution over time, we propose a time-varying compensation scheme to maintain a positive ridesharing ridership at user equilibrium. To match the demand and the supply of ridesharing service over time, the compensation scheme should be set according to the inconvenience cost functions and the out-of-pocket cost functions. When the price charged per time unit is higher than the inconvenience cost per time unit perceived by the ridesharing drivers, the ridesharing participants will travel at the center of peak hours and solo drivers will commute at the two tails. Within the feasible region with positive ridership, the ridesharing program can reduce the congestion and all the commuters will be better off. To support system optimum (SO), we derive a time-varying toll combined with a flat ridesharing price from eliminating queuing delay. Under SO toll, the ridesharing program can attract more participants and have an enlarged feasible region. This reveals that the commuters are more tolerant to the inconvenience caused by sharing a ride at SO because of the lower travel time. Compared with no-toll equilibrium, both overall congestion and individual travel cost are further reduced at SO.  相似文献   

14.
15.
Morning commuters choose their departure times and travel modes based on a combinational evaluation of factors associated with the chances of running into bottleneck congestion, likely schedule delays, parking space availability as well as monetary costs of traveling and parking. This study investigates a morning commute problem with carpooling behavior under parking space constraint at destination. We consider such a scenario that as a competing mode of the transit line, the highway contains a carpool lane only used by carpoolers while all solo drivers are forced to use a general purpose (GP) lane. Unlike the standard bottleneck model, the rush-hour dynamic departure patterns with a binding parking supply vary with the relative proportion of the two lanes’ capacities. The possible departure pattern domain with different parking supply and lane capacity allocation is explored in terms of the relative extra carpool cost and distinguished between the bi-mode and multi-mode equilibria. It is found that compared with solo drivers, carpoolers have shorter rush hour in order to smooth the extra carpool cost. With the decrease of parking spots, the number of solo drivers cuts down gradually, whilst the number of carpoolers climbs up firstly and then declines in the multi-mode system. Under mild assumptions, the best system performance can be realized with the joint consideration of total travel cost and vehicle emission cost through optimizing the lane capacity allocation and the parking supply.  相似文献   

16.
We hypothesise that differences in people’s attitudes and personality traits lead them to attribute varying importance to environmental considerations, safety, comfort, convenience and flexibility. Differences in personality traits can be revealed not only in the individuals’ choice of transport, but also in other actions of their everyday lives—such as how much they recycle, whether they take precautions or avoid dangerous pursuits. Conditioning on a set of exogenous individual characteristics, we use indicators of attitudes and personality traits to form latent variables for inclusion in an, otherwise standard, discrete mode choice model. With a sample of Swedish commuters, we find that both attitudes towards flexibility and comfort, as well as being pro-environmentally inclined, influence the individual’s choice of mode. Although modal time and cost still are important, it follows that there are other ways, apart from economic incentives, to attract individuals to the, from society’s perspective, desirable public modes of transport. Our results should provide useful information to policy-makers and transportation planners developing sustainable transportation systems.  相似文献   

17.
Welfare effects of congestion pricing in Singapore   总被引:1,自引:0,他引:1  
This paper examines the Singapore Area License Scheme. Changes in scheduling and choices of transportation mode by commuters are discussed. Although the toll is shown to reduce travel times for many commuters, many commuters are shown to incur scheduling costs as a result of the toll. Using estimated parameters of an indirect utility function, welfare functions are computed to compare welfare levels prior to, and just after, the toll was put into place. The evidence suggests that the toll may have reduced welfare.  相似文献   

18.
Modeling commuters’ choice behavior in response to transportation demand management (TDM) helps in predicting the consequences of TDM policies. Although research looking at choice behavior has evolved to investigate preference heterogeneity in response to factors influencing mode choice, as far as we know, no study has considered taste variation across commuters in response to multiple TDM policies. This paper investigates the presence of systematic preference heterogeneity across commuters, in response to the TDM policies that can be explained by their socio-economic or commuting-related characteristics. Analysis is based on results of a stated preference survey developed using a Design of Experiments approach. Five policies were assessed in order to study the impact they had on how commuters chose their mode of transportation. These include increasing parking cost, increasing fuel cost, implementing cordon pricing, reducing transit time and improving access to transit facilities. For the sake of assessing both systematic and random preference heterogeneity across car commuters, a form of the Mixed Multinomial Logit (MMNL) model that identifies sources of heterogeneity and consequently makes the choice models less restrictive in considering both systematic and random preference variation across individuals was developed. The sample includes 366 individuals who regularly commute to their workplace in the city center of Tehran, Iran. The likelihood function value of this model shows a significant improvement compared to the base MNL model, using the same variables. The MMNL model shows that taste variation across the studied commuters results in differences in influences estimated for three policies: increasing parking cost, reducing transit time and improving access to transit. The analysis examines several distributions for random parameters to test the impacts of restricting distributions to allow for only normality. The results confirm the potential to improve model fit with alternative distributions.  相似文献   

19.
The increasing number of travelers in urban areas has led to new opportunities for local government and private mobility providers to offer new travel modes besides and in addition to traditional ones. Multimodal travel provides an especially promising opportunity. However, until now the underlying reasons why consumers choose specific alternatives have not been fully understood. Hence, the design of new travel modes is mainly driven by obvious criteria such as environmental friendliness and convenience but might not consider consumers’ real or latent needs. To close this research gap, sixty in-depth interviews with urban travelers were conducted. To identify the perceptual differences of customers among different travel modes, the repertory grid technique as an innovative, structured interview method was applied. Our data show that urban travelers distinguish and select travel alternatives based on 28 perceptual determinants. While some determinants associated with private cars such as privacy, flexibility and autonomy are key indicators of travel mode choice, costs and time efficiency also play a major role. Furthermore, by comparing travel modes to an ideal category, we reveal that some perceptual determinants do not need to be maximized in order to fulfill customer needs optimally. A comparison of consumers’ perceptual assessments of alternative travel modes identifies specific advantages and disadvantages of all alternatives, and provides fruitful implications for government and private mobility providers.  相似文献   

20.
Choices of travel mode and trip chain as well as their interplays have long drawn the interests of researchers. However, few studies have examined the differences in the travel behaviors between holidays and weekdays. This paper compares the choice of travel mode and trip chain between holidays and weekdays tours using travel survey data from Beijing, China. Nested Logit (NL) models with alternative nesting structures are estimated to analyze the decision process of travelers. Results show that there are at least three differences between commuting-based tours on weekdays and non-commuting tours on holidays. First, the decision structures in weekday and holiday tours are opposite. In weekday tours people prefer to decide on trip chain pattern prior to choosing travel mode, whereas in holiday tours travel mode is chosen first. Second, holiday tours show stronger dependency on cars than weekday tours. Third, travelers on holidays are more sensitive to changes in tour time than to the changes in tour cost, while commuters on weekdays are more sensitive to tour cost. Findings are helpful for improving travel activity modeling and designing differential transportation system management strategies for weekdays and holidays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号