首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The main purpose of this paper is to develop an efficient method to design traffic analysis zones (TAZs), which is necessary for implementing a planning process with Geographic Information System (GIS) for Transportation (GIS‐T), using statistical spatial data analyses and GIS technology. The major roles of GIS in this method are: (1) to produce basic spatial units (BSUs) with topological data structure; (2) to integrate various procedures during the TAZ generation including computer program routines; and (3) to visualize the output of each TAZ generation. One of the most significant reasons for obtaining well‐defined TAZs is the fact that they are defined at the outset of transportation demand modeling, used from trip generation to trip assignment, and will ultimately affect transportation policy decisions.

Toward obtaining well‐defined TAZs, this paper concentrates on two important constraints: homogeneity and contiguity. Iterative partitioning technique is adopted to promote the optimum homogeneity of generated TAZs, while a contiguity checking algorithm is developed to ensure contiguous TAZs are generated by the iterative partitioning technique.  相似文献   

2.
A disaggregate spatial analysis, using enumeration district data for London was conducted with the aim of examining how congestion may affect traffic safety. It has been hypothesized that while congested traffic conditions may increase the number of vehicle crashes and interactions, their severity is normally lower than crashes under uncongested free flowing conditions. This is primarily due to the slower speeds of vehicles when congestion is present. Our analysis uses negative binomial count models to examine whether factors affecting casualties (fatalities, serious injuries and slight injuries) differed during congested time periods as opposed to uncongested time periods. We also controlled for congestion spatially using a number of proxy variables and estimated pedestrian casualty models since a large proportion of London casualties are pedestrians. Results are not conclusive. Our results suggest that road infrastructure effects may interact with congestion levels such that in London any spatial differences are largely mitigated. Some small differences are seen between the models for congested versus uncongested time periods, but no conclusive trends can be found. Our results lead us to suspect that congestion as a mitigator of crash severity is less likely to occur in urban conditions, but may still be a factor on higher speed roads and motorways.  相似文献   

3.
A cross-median crash (CMC) is one of the most severe types of crashes in which a vehicle crosses the median and sometimes collides with opposing traffic. A study of severity of CMCs in the state of Wisconsin was conducted by Lu et al. in 2010. Discrete choice models, namely ordinal logit and probit models were used to analyze factors related to the severity of CMCs. Separate models were developed for single and multi-vehicle CMCs. Although 25 different crash, roadway, and geometric variables were used, only 3 variables were found to be statistically significant which were alcohol usage, posted speed, and road conditions. The objective of this research was to explore the feasibility of GUIDE Classification Tree method to analyze the severity of CMCs to discover if any additional information could be revealed.A dataset of CMCs in the state of Wisconsin between 2001 and 2007, used in the study by Lu et al. was used to develop three different GUIDE Classification Trees. Additionally, the effects of variable types (continuous or discrete), misclassification costs, and tree pruning characteristics on models results were also explored. The results were directly compared with discrete choice models developed in the study by Lu et al. showing that the GUIDE Classification Trees revealed new variables (median width and traffic volume) that affect CMC severity and provided useful insight on the data. The results of this research suggest that the use of Classification Tree analysis should at least be considered in conjunction with regression-based crash models to better understand factors affecting crashes. Classification Tree models were able to reveal additional information about the dependent variable and offer advantages with respect to multicollinearity and variable redundancy issues.  相似文献   

4.
This paper examines pedestrian anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. Pedestrian crashes involving pedestrians walking along streets (i.e. with their backs to traffic or facing traffic) have been overlooked in literature. Although this is not the most frequent type of crash, the crash consequence to pedestrians is a safety concern. Combining Taiwan A1A2 police‐reported accident data and data from the National Health Insurance Database from years 2003–2013, this paper examines anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. There were a total of 830 and 2267 pedestrian casualties in back‐to‐traffic and facing‐traffic crashes respectively. The injuries sustained by pedestrians and crash characteristics of these two crash types were compared with those of other crossing types of crashes (nearside crash, nearside dart‐out crash, offside crash, and offside dart‐out crash). Odds of various injuries to body regions were estimated using logistic regressions. Key findings include that the percentage of fatalities in back‐to‐traffic crashes is the highest; logistic models reveal that pedestrians in back‐to‐traffic crashes sustained more head, neck, and spinal injuries than did pedestrians in other crash types, and unlit darkness and non‐built‐up roadways were associated with an increased risk of pedestrian head injuries. Several crash features (e.g. unlit darkness, overtaking manoeuvres, phone use by pedestrians and drivers, and intoxicated drivers) are more frequently evident in back‐to‐traffic crashes than in other types of crashes. The current research suggests that in terms of crash consequence, facing traffic is safer than back to traffic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In the past, two‐way left‐turn lane (TWLTL) median treatments have been frequently used in Florida to inexpensively improve traffic and safety performances. In order to identify factors that may have significant impacts on safety operations in TWLTL sections and to identify TWLTL locations that present existing and future safety concerns, a research project was carried out and results are summarized in the paper. In the research, a three‐year crash history database with crashes and section characteristics from a total of 1688 TWLTL sections all over Florida was developed and used. A negative binomial regression model was developed to determine the statistical relationship between the number of crashes per mile per year and several variables such as traffic volume, access density, posted speed, and number of lanes. In regard to the methodology, in order to identify locations with safety concerns, several steps are needed: development of real crash data distribution, determination of statistical distribution models that better represent the actual crash data, determination of percentile values for the average number of crashes, estimation of crash rates for sections with the same characteristics, estimation of critical values for the variables corresponding to the percentile values for average number of crashes, calculation of tables of critical average annual daily traffic values, and generation of a list of TWLTL locations with critical safety concerns. Results presented in the paper have been used in real applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper examines the impact of personal and environmental characteristics on severity of injuries sustained in pedestrian–vehicle crashes using a generalized ordered probit model. The data covers 2000–2004 of pedestrian–vehicle crashes taken from police incident reports for Baltimore City and supplemented with local land use, urban form and transportation information specific to the individual crash locations. The results on personal and behavioral variables confirm previous findings. Women pedestrians involved in crashes tend to be injured less frequently than their male counterparts; children have an increased likelihood of sustaining injuries and older persons are more likely to be fatally injured. Pedestrians who cross against the traffic signal, are not in a crosswalk and are involved in a crash after dark are associated with greater injury risk. Of the built environment policy variables of interest, transit access and greater pedestrian connectivity, such as central city areas, are significant and negatively associated with injury severity. These results suggest that the environmental conditions should be given more scrutiny and be an important consideration when evaluating and planning for pedestrian safety.  相似文献   

7.
Typical engineering research on traffic safety focuses on identifying either dangerous locations or contributing factors through a post-crash analysis using aggregated traffic flow data and crash records. A recent development of transportation engineering technologies provides ample opportunities to enhance freeway traffic safety using individual vehicular information. However, little research has been conducted regarding methodologies to utilize and link such technologies to traffic safety analysis. Moreover, traffic safety research has not benefited from the use of hurdle-type models that might treat excessive zeros more properly than zero-inflated models.This study developed a new surrogate measure, unsafe following condition (UFC), to estimate traffic crash likelihood by using individual vehicular information and applied it to basic sections of interstate highways in Virginia. Individual vehicular data and crash data were used in the development of statistical crash prediction models including hurdle models. The results showed that an aggregated UFC measure was effective in predicting traffic crash occurrence, and the hurdle Poisson model outperformed other count data models in a certain case.  相似文献   

8.
9.
This study applied the genetic programming (GP) model to identify traffic conditions prone to injury and property‐damage‐only (PDO) crashes in different traffic states on freeways. It was found that the traffic conditions prone to injury and PDO crashes can be classified into a high‐speed and a low‐speed traffic state. The random forest (RF) analyses were conducted to identify the contributing factors to injury and PDO crashes in these two traffic states. Four separate GP models were then developed to link the risks of injury and PDO crashes in two traffic states to the variables selected by the RF. An overall GP model was also developed for the combined dataset. It was found that the separate GP models that considered different traffic states and crash severity provided better predictive performance than the overall model, and the traffic flow variables that affected injury and PDO crashes were quite different across different traffic states. The proposed GP models were also compared with the traditional logistic regression models. The results suggested that the GP models outperformed the logistic regression models in terms of the prediction accuracy. More specifically, the GP models increased the prediction accuracy of injury crashes by 10.7% and 8.0% in the low‐speed and high‐speed traffic states. For PDO crashes, the GP models increased the prediction accuracy by 7.4% and 6.0% in the low‐speed and high‐speed traffic states. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Pedestrians and cyclists are vulnerable road users. They are at greater risk for being killed in a crash than other road users. The percentage of fatal crashes that involve a pedestrian or cyclist is higher than the overall percentage of total trips taken by both modes. Because of this risk, finding ways to minimize problematic street environments is critical. Understanding traffic safety spatial patterns and identifying dangerous locations with significantly high crash risks for pedestrians and cyclists is essential in order to design possible countermeasures to improve road safety. This research develops two indicators for examining spatial correlation patterns between elements of the built environment (intersections) and crashes (pedestrian- or cyclist-involved). The global colocation quotient detects the overall connection in an area while the local colocation quotient identifies the locations of high-risk intersections. To illustrate our approach, we applied the methods to inspect the colocation patterns between pedestrian- or cyclist-vehicle crashes and intersections in Houston, Texas and we identified among many intersections the ones that significantly attract crashes. We also scrutinized those intersections, discussed possible attributes leading to high colocation of crashes, and proposed corresponding countermeasures.  相似文献   

11.
This paper proposes a reformulation of count models as a special case of generalized ordered-response models in which a single latent continuous variable is partitioned into mutually exclusive intervals. Using this equivalent latent variable-based generalized ordered response framework for count data models, we are then able to gainfully and efficiently introduce temporal and spatial dependencies through the latent continuous variables. Our formulation also allows handling excess zeros in correlated count data, a phenomenon that is commonly found in practice. A composite marginal likelihood inference approach is used to estimate model parameters. The modeling framework is applied to predict crash frequency at urban intersections in Arlington, Texas. The sample is drawn from the Texas Department of Transportation (TxDOT) crash incident files between 2003 and 2009, resulting in 1190 intersection-year observations. The results reveal the presence of intersection-specific time-invariant unobserved components influencing crash propensity and a spatial lag structure to characterize spatial dependence. Roadway configuration, approach roadway functional types, traffic control type, total daily entering traffic volumes and the split of volumes between approaches are all important variables in determining crash frequency at intersections.  相似文献   

12.
Cycling and walking are environmentally-friendly transport modes, providing alternatives to automobility. However, exposure to hazards (e.g., crashes) may influence the choice to walk or cycle for risk-averse populations, minimizing non-motorized travel as an alternative to driving. Most models to estimate non-motorized traffic volumes (and subsequently hazard exposure) are based on specific time periods (e.g., peak-hour) or long-term averages (e.g., Annual Average Daily Traffic), which do not allow for estimating hazard exposure by time of day. We calculated Annual Average Hourly Traffic estimates of bicycles and pedestrians from a comprehensive traffic monitoring campaign in a small university town (Blacksburg, VA) to develop hourly direct-demand models that account for both spatial (e.g., land use, transportation) and temporal (i.e., time of day) factors. We developed two types of models: (1) hour-specific models (i.e., one model for each hour of the day) and (2) a single spatiotemporal model that directly incorporates temporal variables. Our model results were reasonable (adj-R2 for the hour-specific [spatiotemporal] bicycle model: ∼0.47 [0.49]; pedestrian model: ∼0.69 [0.72]). We found correlation among non-motorized traffic, land use (e.g., population density), and transportation (e.g., on-street facility) variables. Temporal variables had a similar magnitude of correlation as the spatial variables. We produced spatial estimates that vary by time of day to illustrate spatiotemporal traffic patterns for the entire network. Our temporally-resolved models could be used to assess exposure to hazards (e.g. air pollution, crashes) or locate safety-related infrastructure (e.g., striping, lights) based on targeted time periods (e.g., peak-hour, nighttime) that temporally averaged estimates cannot.  相似文献   

13.
Traffic crashes occurring on freeways/expressways are considered to relate closely to previous traffic conditions, which are time-varying. Meanwhile, most studies use volume/occupancy/speed parameters to predict the likelihood of crashes, which are invalid for roads where the traffic conditions are estimated using speed data extracted from sampled floating cars or smart phones. Therefore, a dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data. Moreover, the traffic conditions near the crash site were identified as several state combinations according to the level of congestion and included in the DBN model. Based on 551 crashes and corresponding speed information collected on expressways in Shanghai, China, DBN models were built with time series speed condition data and different state combinations. A comparative analysis of the DBN model using flow detector data and a static Bayesian network model was also conducted. The results show that, with only speed condition data and nine traffic state combinations, the DBN model can achieve a crash prediction accuracy of 76.4% with a false alarm rate of 23.7%. In addition, the results of transferability testing imply that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy.  相似文献   

14.
Concerns over transportation energy consumption and emissions have prompted more studies into the impacts of built environment on driving-related behavior, especially on car ownership and travel mode choice. This study contributes to examine the impacts of the built environment on commuter’s driving behavior at both spatial zone and individual levels. The aim of this study is threefold. First, a multilevel integrated multinomial logit (MNL) and structural equation model (SEM) approach was employed to jointly explore the impacts of the built environment on car ownership and travel mode choice. Second, the spatial context in which individuals make the travel decisions was accommodated, and spatial heterogeneities of car ownership and travel mode choice across traffic analysis zones (TAZs) were recognized. Third, the indirect effects of the built environment on travel mode choice through the mediating variable car ownership were calculated, in other words, the intermediary nature of car ownership was considered. Using the Washington metropolitan area as the study case, the built environment measures were calculated for each TAZ, and the commuting trips were drawn from the household travel survey in this area. To estimate the model parameters, the robust maximum likelihood (MLR) method was used. Meanwhile, a comparison among different model structures was conducted. The model results suggest that application of the multilevel integrated MNL and SEM approach obtains significant improvements over other models. This study give transportation planners a better understanding on how the built environment influences car ownership and commuting mode choice, and consequently develop effective and targeted countermeasures.  相似文献   

15.
This study was to evaluate traffic safety of four‐legged signalized intersections and to develop a spreadsheet tool for identifying high‐risk intersections taking into consideration vehicle movements, left‐turn signal phase types, and times of day. The study used data from Virginia and employed count data models and the empirical Bayes (EB) method for safety evaluation of such intersections. It was found that crash pattern defined by vehicle movements involved in a crash and time of day are important factors for intersection crash analysis. Especially for a safety performance function (SPF), a model specification (Poisson or NB), inclusion of left‐turn signal types, type of traffic flow variables, variable functional forms, and/or magnitudes of coefficients turned out to be different across times of day and crash patterns. The spreadsheet application tool was developed incorporating the developed SPFs and the EB method. As long as Synchro files for signal plans and crash database are maintained, no additional field data collection efforts are required. Adjusting the developed SPFs and the spreadsheet for recent traffic and safety conditions can be done by applying the calibration methods employed in the SafetyAnalyst software and the Highway Safety Manual. Implementing the developed tool equipped with streamlining data entry would greatly improve accuracy and efficiency of safety evaluation of four‐legged signalized intersections in localities and highway agencies that cannot operate the SafetyAnalyst. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A method is developed to determine how crash characteristics are related to traffic flow conditions at the time of occurrence. Crashes are described in terms of the type and location of the collision, the number of vehicles involved, movements of these vehicles prior to collision, and severity. Traffic flow is characterized by central tendencies and variations of traffic flow and flow/occupancy for three different lanes at the time and place of the crash. The method involves nonlinear canonical correlation applied together with cluster analyses to identify traffic flow regimes with distinctly different crash taxonomies. A case study using data for more than 1000 crashes in Southern California identified twenty-one traffic flow regimes for three different ambient conditions: dry roads during daylight (eight regimes), dry roads at night (six regimes), and wet conditions (seven regimes). Each of these regimes has a unique profile in terms of the type of crashes that are most likely to occur, and a matching of traffic flow parameters and crash characteristics reveals ways in which congestion affects highway safety.  相似文献   

17.
Given the enormous losses to society resulting from large truck involved crashes, a comprehensive understanding of the effects of highway geometric design features on the frequency of truck involved crashes is needed. To better predict the occurrence probabilities of large truck involved crashes and gain direction for policies and countermeasures aimed at reducing the crash frequencies, it is essential to examine truck involved crashes categorized by collision vehicle types, since passenger cars and large trucks differ in dimensions, size, weight, and operating characteristics. A data set that includes a total of 1310 highway segments with 1787 truck involved crashes for a 4-year period, from 2004 to 2007 in Tennessee is employed to examine the effects that geometric design features and other relevant attributes have on the crash frequency. Since truck involved crash counts have many zeros (often 60–90% of all values) with small sample means and two established categories, car-truck and truck-only crashes, are not independent in nature, the zero-inflated negative binomial (ZINB) models are developed under the bivariate regression framework to simultaneously address the above mentioned issues. In addition, the bivariate negative binomial (BNB) and two individual univariate ZINB models are estimated for model validation. Goodness of fit of the investigated models is evaluated using AIC, SBC statistics, the number of identified significant variables, and graphs of observed versus expected crash frequencies. The bivariate ZINB (BZINB) models have been found to have desirable distributional property to describe the relationship between the large truck involved crashes and geometric design features in terms of better goodness of fit, more precise parameter estimates, more identified significant factors, and improved predictive accuracy. The results of BZINB models indicate that the following factors are significantly related to the likelihood of truck involved crash occurrences: large truck annual average daily traffic (AADT), segment length, degree of horizontal curvature, terrain type, land use, median type, lane width, right side shoulder width, lighting condition, rutting depth (RD), and posted speed limits. Apart from that, passenger car AADT, lane number, and indicator for different speed limits are found to have statistical significant effects on the occurrences of car-truck crashes and international roughness index (IRI) is significant for the predictions of truck-only crashes.  相似文献   

18.
Weaving segments are potential recurrent bottlenecks which affect the efficiency and safety of expressways during peak hours. Meanwhile, they are one of the most complicated segments, since on- and off-ramp traffic merges, diverges and weaves in the limited space. One effective way to improve the safety of weaving segments is to study crash likelihood using real-time crash data with the objective of, identifying hazardous conditions and reducing the risk of crashes by Intelligent Transportation Systems (ITS) traffic control. This study presents a multilevel Bayesian logistic regression model for crashes at expressway weaving segments using crash, geometric, Microwave Vehicle Detection System (MVDS) and weather data. The results show that the mainline speed at the beginning of the weaving segments, the speed difference between the beginning and the end of weaving segment, logarithm of volume have significant impacts on the crash risk of the following 5–10 min for weaving segments. The configuration is also an important factor. Weaving segment, in which there is no need for on- or off-ramp traffic to change lane, is with high crash risk because it has more traffic interactions and higher speed differences between weaving and non-weaving traffic. Meanwhile, maximum length, which measures the distance at which weaving turbulence no longer has impact, is found to be positively related to the crash risk at the 95% confidence interval. In addition to traffic and geometric factors, wet pavement surface condition significantly increases the crash ratio by 77%. The proposed model along with ITS, e.g., ramp metering, Dynamic Message Sign (DMS), and high friction surface treatment can be used to enhance the safety of weaving segments in real-time.  相似文献   

19.
The primary objective of this study was to evaluate the risks of crashes associated with the freeway traffic flow operating at various levels of service (LOS) and to identify crash-prone traffic conditions for each LOS. The results showed that the traffic flow operating at LOS E had the highest crash potential, followed by LOS F and D. The traffic flow operating at LOS B and A had the lowest crash potential. For LOS A and B, the vehicle platoon and abrupt change in vehicle speeds were major contributing factors to crash occurrences. For LOS C, crash risks were correlated with lane-change maneuvers, speed variation, and small headways in traffic. For LOS D, crash risks increased with an increase in the temporal change in traffic flow variables and the frequency of lane-change maneuvers. For LOS E, crash risks were mainly affected by high traffic volumes and oscillating traffic conditions. For LOS F, crash risks increased with an increase in the standard deviation of flow rate and the frequency of lane-change maneuvers. The findings suggested that the mechanism of crashes were quite different across various LOS. A Bayesian random-parameters logistic regression model was developed to identify crash-prone traffic conditions for various LOS. The proposed model significantly improved the prediction performance as compared to the conventional logistic regression model.  相似文献   

20.
According to the U.S. National Highway Traffic Safety Administration, in 2012, more than 4950 motorcyclists were killed in traffic accidents. Compared to passenger car occupants, mile for mile, motorcyclists are more than 26 times more at risk to dying in crashes. Due to the high fatality rate associated with motorcycle crashes, factors contributing to this type of crash must be identified in order to implement effective safety countermeasures. Given that the available datasets are large and complex, identifying the key factors contributing to crashes is a challenging task. Using multiple correspondence analysis, as an exploratory data analysis technique to determine the dataset structure, we identified the roadway/environmental, motorcycle, and motorcyclist‐related variables influencing at‐fault motorcycle‐involved crashes. This study used the latest available dataset (2009 to 2013) from the Critical Analysis Reporting Environment database to study motorcycle crashes in the state of Alabama. The most significant contributors to the frequency and severity of at‐fault motorcycle‐involved crashes were found to be light conditions, time of day, driver condition, and weather conditions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号