首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究车‐路系统耦合作用下汽车行驶平顺性,运用车辆动力学仿真软件CarSim建立整车模型,并采用傅里叶逆变换法对 GB7031中规定的A~D级路面进行数值仿真与验证,分析了车辆以不同速度行驶在不同等级路面上的加速度和车轮法向动载系数。结果表明:①随着路面等级的降低和车辆行驶速度的提高,车身加速度显著增大,由50 km/h、A级路面上的0.2599 m/s2变化为120 km/h、D级路面上的1.6889m/s2,增加了5.5倍,车辆行驶平顺性下降;②车‐路耦合产生的动载作用受路面工况和车速的影响也较大,由50 km/h、A级路面上的0.0833变化为120 km/h、D级路面上的0.7754,增大8.3倍。路面等级越低,车速越高,动载系数越大,对路面的破坏作用越严重。   相似文献   

2.
为了解决汽车在仿真中加速度行驶的控制问题,基于功率平衡原理,对汽车行驶中的受力进行分析,建立汽车发动机逆模型,完成汽车加速度控制方法的建立。在matlab/simulink环境中建立汽车加速度控制算法,在汽车的加速度分别为1m/s~2,2m/s~2,3m/s~2进行仿真验证,仿真结果表明:随着行驶加速度的增加,控制器对汽车行驶速度的控制精度逐渐下降,并且速度偏差随之增大,但是基本可以保证汽车的行驶速度按照参考速度的变化趋势变化。  相似文献   

3.
跨江大桥历来都是城市交通的命脉和交通结点,为明确跨江大桥的运行速度特征以及驾驶行为模式,在重庆市菜园坝大桥展开了30位被试的小客车实车驾驶试验,使用航姿测量系统和Mobileye630采集自然驾驶状态下汽车的连续行驶速度、加速度和道路环境信息.基于自然驾驶数据,明确了菜园坝大桥的速度变化模式,分析了车辆合、分流对大桥主线行驶车辆运行特性的影响.研究结果表明,菜园坝长江大桥2个行驶方向都呈"加速-减速-加速-减速"的变化趋势;在自由流状态下,桥头和桥尾15th百分位与85th百分位速度的差值从10 km/h增加到20 km/h,不同驾驶人在大桥上的速度幅值具有较强的离散性,表明车辆之间存在严重的纵向冲突,揭示了跨江大桥车辆追尾事故的本质原因.菜园坝大桥菜苏方向合流区平均减速距离131 m,平均减速度为-0.301 m/s2,分流区平均减速距离213 m,平均减速度-0.406 m/s2,苏菜方向分流区平均减速距离267 m,平均减速为-0.387 m/s2,车辆在合流点附近的减速距离和减速度要低于分流点,合流与分流车辆的换道行为会显著影响大桥主线直行车辆的运行状态,导致驾驶人采取减速行为.匝道出入口与桥头距离越近,车辆速度受到的影响程度就会高,有必要加强分/合流点附近的交通管控和行车引导,提高车辆行驶安全性.   相似文献   

4.
根据某种机理建立的交通流模型需要通过模型标定和验证后才能具体应用到实际中.通过采用视频处理技术,对陕西省西安市二环主干路和浙江省舟山市昌洲大道上上下高峰时期内的车辆微观运动录像进行技术处理,提取得到了包括位移、速度和加速度的车辆微观运动轨迹数据.根据这些交通流数据,采用Levnberg-Marquardt算法,分别对跟驰理论中2个典型的跟驰模型,即惯性模型中的敏感系数、安全时间间隔、最小安全车间距、允许速度和智能驾驶人模型中的理想速度、安全时间间隔、静止安全距离、启步加速度和舒适加速度进行了标定和验证.针对惯性模型,当允许速度大于实际速度时,位移均方差和速度均方差的平均值分别为2.8m和0.58 m/s,当允许速度小于实际速度时,位移均方差和速度均方差的平均值分别为2.22m和0.49 m/s;针对智能驾驶人模型,利用早、中、晚3组数据进行标定,得到的位移均方差和速度均方差的平均值分别为0.12m和0.10 m/s,0.07m和0.10 m/s,0.75m和0.27 m/s.因此,惯性模型与智能驾驶人模型都可用于描述城市主干路近饱和状态(即跟随车辆的最大速度远小于允许速度的行驶状态)下的车辆跟驰行为,而且当智能驾驶人模型中的加速度指数取较大的值时,它较前者更为适合.   相似文献   

5.
为分析汽车行驶时的纵向加速度变化情况及影响因素,运用七自由度汽车振动模型分析了前、后车轮和车身不同方向的振动受力情况,再根据路面不平度模型的空间频率功率谱密度和时间频率功率谱密度分析,结果表明,汽车在三级公路-E级路面以60 Km/h的速度行驶时,车身加速度跳动范围最大,最大值为5.92 m/s2。研究的内容和方向,为汽车运动学和汽车平顺性的研究及优化设计提供一定理论依据。  相似文献   

6.
春融期重载车辆-路面-路基垂向动力分析模型   总被引:1,自引:0,他引:1  
针对季节冻土区春融期重载车辆作用下道路病害突出的问题,以三轴重载汽车为例,建立季节冻土区春融期重载车辆-路面-路基体系垂向动力学物理模型;基于D' Alembert原理推导了重载车辆、路面和路基冻结层的振动微分方程,并采用Wilson-θ法对动力方程求解。数值仿真结果表明:建立的路面-路基体系模型能够反映季节冻土区春融期路基呈层状分布且刚度软化的特性;随着车体质量增加和路基融化层刚度的降低,路面振动位移平均峰值和路面振动加速度平均峰值基本呈线性增加;车辆行驶速度增大,路面振动加速度平均峰值增大,优势频段数目增多、优势频率增大;路面振动位移平均峰值呈锯齿型;路基冻结层厚度增加,路面振动位移平均峰值和路面振动加速度平均峰值降低,当其厚度大于0.3 m后趋于稳定。  相似文献   

7.
该文在研究现有路基工作区深度计算方法的基础上,根据对汽车行驶过程中动荷载变化规律的实际检测与分析,提出基于车辆动荷载影响下综合确定半刚性路面路基工作区深度的计算方法。进行室内试验采集冲击荷载的动应力数据,采用Abaqus软件进行数值模拟,对比实测数据验证道路模型准确性。进行室外道路现场观测,采集车辆动荷载数据,建立车辆动荷载模型,对比实测数据验证模型准确性。在此基础上参照现有路基工作区定义,模拟计算出不同轴重车辆在不同速度下车辆动荷载的路基工作区深度以及改变路面结构层厚度和路基填料参数对路基工作区深度的影响,得出在典型路面结构下:考虑车辆动荷载的情况,高速公路路基工作区深度应在1.14m以上,一级公路为1.23m以上,二级公路为1.29m以上,三级公路为1.42m以上,重载交通情况下路基工作区深度相应加大30~40cm。  相似文献   

8.
车辆的平顺性和道路友好性是反应车辆悬架性能的2个重要指标。为改善重载汽车在道路行驶中的友好性,基于7自由度重载汽车动力学模型,建立了半主动悬架系统的运动方程,设计了半主动悬架最优控制器,考虑路面不平度的随机激励,以车辆平顺性和道路友好性为控制目标,提出了车辆悬架的最优半主动控制策略,并且给出了详尽的推导过程。仿真分析结果表明:当汽车以20m/s的速度行驶在C级路面时,车身和驾驶室垂向加速度有效均方根值分别减少了3.42%和46.4%,轮胎对路面的破坏减少了2.10%;半主动控制悬架有效地保证了车辆行驶的平顺性,同时可减小车辆对路面的冲击作用,改善了车辆的悬架性能。  相似文献   

9.
采用有限元软件对高速铁路路基在列车作用的动应力、振动加速度、速度、沉降、动应力衰减等应力应变规律进行理论性分析,结果表明:路基刚度的变化对路基顶面动应力的影响较小;路基综合刚度越高,路基的动力稳定性越高;采用振动加速度、速度及沉降三项指标作为高速铁路设计的控制参数较为合理.  相似文献   

10.
鉴于现有的路基动态回弹模量试验中没有充分考虑超载车辆、行车速度、现有路面结构及车轮叠加效应对路基应力的影响,该文结合以上因素,选取3.0m为路基应力计算深度,分析动静荷载下路基应力的变化规律。结果表明:路基应力在动荷载下的值高于静荷载;随路面结构参数增加,路基总竖向应力和总侧向应力规律相似;随车辆荷载增加,路基总竖向应力显著增加,路基总侧向应力缓慢增加;随行车速度增加,路基总侧向应力增加幅度大于总竖向应力;最终给出了动荷载下路基应力的取值范围,为基于道路寿命的路面结构设计提供参考。  相似文献   

11.
对国内外车辆平顺性试验评价方法进行了回顾分析,指出了当前我国越野汽车平顺性脉输入试验存在的问题。针对某轻型4×4轮式越野汽车,开展以机动性为评价目标的平顺性脉输入试验,给出了越野车辆平顺性多工况脉输入试验的基本方法。对试验曲线进行拟合,得到了车辆通过不同凸块高度的加速响应变化规律。在此基础上,以人体承受的加速度24.5 m/s~2为限值,得到了车辆通过不同凸块高度允许的最高车速。所取得的试验数据和分析结果为越野车辆平顺性评价提供了重要依据。  相似文献   

12.
为探寻中小型公交车的加速度特性,对西安市702路、709路和309路三辆不同速度的公交车进行加速度测量试验,将所试验的3辆车的数据分组,在外界影响因素不同的情况下分别进行对车辆加速度的特性进行对比分析。试验结果表明,加速度特性影响乘坐舒适度,702路快速公交车的纵向加速度、重力加速度和横摆角速度在三辆车中最大,309路慢速公交车的加速度特性相关数值最小,702和709路公交车的舒适度较差,而309路的舒适度较好。  相似文献   

13.
为研究电动轮车辆系统在路面-电磁双重激励下的振动特性,明确轮毂电机电磁激励对车辆行驶平顺性的影响规律,建立了基于刚性连接结构的轮毂驱动式电动汽车1/4的2-DOF垂向振动动力学模型;考虑路面激励的随机性以及电磁激励的分段周期性,得到了含随机性和周期性的复杂外激励模型;采用时域分析法,得到复杂外激励下电动轮车辆平顺性评价指标即车身加速度、悬架动挠度、轮胎动载荷时间历程图,并分析了电磁激励对电动轮汽车平顺性的作用规律。结果表明:轮毂电机电磁激励对各指标的影响程度依次为车身加速度>轮胎动载荷>悬架动挠度;在加速行驶工况下,速度越快电机激励振动冲击越大,对车辆的行驶平顺性和舒适性越为不利。  相似文献   

14.
王远  王军 《汽车维修》2011,(11):45-47
汽车自适应巡航控制(AdaptiveCruiseControl,简称ACC)是从传统巡航控制发展而来的,当车辆通过雷达探测到前方没有汽车或其他障碍物时,执行传统巡航控制,按驾驶员设定的速度行驶;当雷达探测到前方有汽车切入或减速行驶时,启动ACC控制系统,根据驾驶员设定的车间距,通过控制车辆的节气门和制动器来控制速度和加速度,以实现设定的目标车头距,从而进行自适应巡航控制。  相似文献   

15.
对市政道路进行减隔振设计,需先研究交通车辆荷载引起的道路振动特性。实测了广州市南大路和番禺大道北辅路在四种车辆和混合车流时的路面振动加速度,并对测试数据进行峰值、频谱、VLz振级分析,研究车辆荷载引起的市政道路振动规律。结果表明:道路振动加速度响应幅值与汽车轴重、行驶速度、道路结构刚度密切相关,随着汽车轴重、车辆行驶速度和道路刚度的增大而增大;汽车荷载激励以竖向振动为主,频率主要在5.0~40.0 Hz之间,能量集中于10.0~20.0Hz范围。  相似文献   

16.
车辆与弯道混凝土护栏碰撞的动态数值模拟及试验   总被引:18,自引:0,他引:18  
对车辆与弯道混凝土护栏碰撞动态数值模拟结果和实车足尺碰撞试验结果进行对比分析,从车辆行驶轨迹、乘员冲击加速度以及车辆损伤形态3个方面,验证了动态数值模拟的准确性,并分析了弯道混凝土护栏曲线半径对乘员碰撞过程中所承受冲击加速度的影响;得到乘员风险的最不利护栏半径。结果表明:有限元仿真是进行汽车护栏碰撞研究的有效方法;弯道处护栏的形式对碰撞时乘员的安全有很大影响。  相似文献   

17.
精确的车辆瞬态燃油消耗估计是车辆节能控制研究的基础,稳态燃油消耗模型受燃油发动机的非线性工作特性、驾驶员的驾驶习惯、车辆行驶的环境、车辆行驶状态、车辆负载等多种因素影响,计算的瞬态燃油消耗与实际燃油消耗偏差较大,现有瞬态油耗模型参数不易标定,因此本文中通过车辆速度与加速度构建了一种新的瞬态燃油消耗估计模型。采用最小二乘法对模型中的参数进行求解,为进一步降低瞬态燃油消耗率的估计偏差,引入指数速度衰减的加权因子,即采用带指数衰减因子的最小二乘法求解油耗模型中的参数,并通过实车试验对瞬态油耗估计方法进行验证。试验结果表明,基于最小二乘法的油耗模型可精确地估计车辆瞬态油耗,带指数速度衰减因子的最小二乘法可进一步降低油耗模型的油耗估计偏差,且估计精度受车辆行驶状态和道路环境等因素影响较小。  相似文献   

18.
以阿拉山口市温泉县G30公路建设项目为依托,通过数值模拟方法,建立陡坡路基典型数值模型,研究在季节性冻土的条件下反h桩对陡坡路基抗滑影响因素,并重点分析了桩间距、冻融循环次数及截面边长对陡坡路基沉降量的影响。结果表明:反h桩排间距对沉降量的影响较大,当反h桩排间距位于6~7 m时,陡坡路基沉降量变化相对稳定;冻融循环次数对沉降量的影响是先增大、后减小的过程;截面边长不是越大越好,在一定范围内,通过增大截面边长可以显著减小沉降量,但继续增加该参数减沉效果不明显。  相似文献   

19.
为确定车辆在互通式立交出口匝道满足安全行驶需求的运行速度过渡段最小长度,分别建立了满足超高过渡、变速行驶、3 s行程时间及横向加速度变化率适中等要求的运行速度过渡段长度计算模型。采用UMRR链式开普勒雷达测速仪,实测不同主线设计速度下立交出口匝道分流鼻运行速度,结合SPSS软件分析,得到分流鼻运行速度。基于运行速度过渡段长度计算模型和典型参数的分析论证,得到了满足不同需求下的运行速度过渡段长度。结果表明:匝道设计速度为30~40 km/h时,车辆变速行驶需求为运行速度过渡段长度的主要控制因素;匝道设计速度为50~80 km/h时,超高过渡、3 s行程时间为运行速度过渡段长度的主要控制因素;基于安全行驶需求,提出了互通式立交出口匝道运行速度过渡段长度最小建议值及纵坡修正系数。  相似文献   

20.
为了分析车辆荷载作用下沥青路面结构的细观状态力学响应,建立了二自由度1/4车辆模型与多层路基路面耦合离散元模型,通过各结构层单轴压缩应力-应变试验与相同工况试验数据比较,经迭代运算得到路面离散元模型各结构层细观参数,应用试验得到的沥青路面细观参数建立多层路基路面模型,在离散元模型的上表面设定一定不平度,在一定速度作用下,1/4车辆模型在路基路面离散元模型上表面匀速移动,从而求解车辆动荷载作用下沥青路面各结构位移、应力等细观受力状态。进而改变1/4车辆模型的车体悬架刚度、悬架阻尼系数、轮胎刚度,轮胎阻尼系数,从而获得在改变车辆参数作用下沥青路面内部的应力变化规律。研究结果表明:基于离散元理论不但可以求得沥青路面在车-路相互作用下各层的应力与变形,而且还可以求得沥青路面各结构层颗粒流的变化趋势,在车辆移动荷载作用下,随着路基路面深度增加,各结构层颗粒流竖直方向动态位移与应力响应依次减少,其中上基层颗粒流动位移比上面层颗粒流动位移减少25%,下面层颗粒流竖向应力约为上面层颗粒流竖向应力的50%,水平方向上颗粒流既有压应力又有拉应力,变化比较复杂,上面层颗粒流水平方向主要承受压应力,其余结构层主要承受拉应力;增加轮胎与悬架刚度系数对模型颗粒流水平方向拉应力影响较大,增加轮胎与悬架阻尼系数对垂直方向颗粒流压应力与水平方向拉应力影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号