共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
随着自动驾驶等级的提高,面向传统汽车的测试工具与测试方法已不能满足自动驾驶汽车测试的需要。基于场景的虚拟测试方法在测试效率、测试成本等方面具有巨大的技术优势,是未来自动驾驶汽车测试验证的重要手段,已成为当前的研究热点。通过对大量相关文献的系统梳理,综述了基于场景的自动驾驶汽车虚拟测试研究进展。对比分析了自动驾驶测试场景的不同定义方式,明确了测试场景的内涵,归纳了测试场景的要素种类,概述了测试场景的数据来源,总结了场景数据的处理方法。在此基础上,对自动驾驶汽车虚拟测试方法进行了总结,分析了典型的测试方式、测试平台和虚拟测试的技术要点,梳理了软件在环、硬件在环和车辆在环测试方案及其关键技术。针对自动驾驶汽车测试效率问题,研究了基于场景的加速测试技术,概述了典型的测试场景随机生成方法和危险场景强化生成方法。最后,对基于场景的自动驾驶汽车虚拟测试所面临的问题及未来发展趋势进行了分析和展望。研究结果表明:基于场景的虚拟测试是推动自动驾驶技术发展和产业落地的必由之路,未来研究应着力突破基于解构与自动重构的测试场景数据库、人-车-环境系统一体化高置信度建模、自动驾驶汽车虚拟测试标准工具链、不同自动驾驶汽车渗透率下的混合交通模拟与测试、测试案例动态自适应随机生成机制等核心共性技术,建立自动驾驶汽车虚拟测试标准体系。 相似文献
4.
5.
搭载自动驾驶功能的智能网联汽车因可在其设计运行条件内承担全部动态驾驶任务,面临安全验证与评估挑战。基于场景的智能网联汽车安全测试评估方法已成为广泛的行业共识,模拟仿真测试是其重要手段之一。从第三方视角,针对自动驾驶安全性、高场景覆盖度、逻辑完备性等测试验证目标,搭建基于软件在环的模拟仿真测试环境框架,在此基础上研究基于设计运行条件覆盖的测试场景集构建方法,探索形成一套高可信智能网联汽车模拟仿真测试评估方法,并在特定应用场景进行初步实践。研究成果为模拟仿真测试在智能网联汽车安全测试与评估中的落地应用提供了参考。 相似文献
6.
7.
为优化智能车辆感知视场,以中国交通事故深度调查(CIDAS)数据库中的事故案例为基础提取22种交叉口乘用车典型事故场景,在交叉口典型乘用车事故仿真场景中提取来车相对于主车的极限相对位置并将其转换为车辆安全通行下最小感知区域;为实现基于场景安全通行的智能车辆感知视场配置,建立场景安全通行需求的智能车辆感知视场配置框架并提出感知视场配置求解方法;在对感知元件进行功能建模后,使用视场配置方法求解场景安全通行下感知元件组合方案;最后使用感知区域覆盖率、目标有效感知率对该感知元件组合方案进行评价,结果表明搭载该感知元件组合方案的智能车辆在事故场景中可满足安全通行要求。 相似文献
8.
随着汽车智能化、网联化以及自动驾驶技术的快速发展,搭载自动驾驶功能的智能网联汽车目前正处于测试验证转向多场景示范应用的新阶段,产业化应用需求日益迫切,车辆安全问题更加凸显,针对车辆产品安全的测试评估方法成为关注焦点。由于智能网联汽车及其运行环境的复杂性以及安全事件的偶发性,传统的高里程实车测试在效率、成本等方面难以适应自动驾驶测试评估的发展需要。从第三方视角出发,在汽车生产企业研发测试的基础上,结合工程实践与应用需要,通过分析智能网联汽车的安全目标,对比模拟仿真、封闭场地和实际道路3种测试方法的特点及优缺点,提出基于场景的 “三支柱”融合测试评估方法,为综合评估智能网联汽车的安全性提供支撑。 相似文献
9.
10.
为解决小概率高风险边缘测试场景的问题,本文提出一种基于场景动力学和强化学习的边缘场景生成方法,实现边缘场景的自动生成,能模拟真实世界中车辆间的对抗与博弈行为的特征。首先将随时间动态变化的场景模型由一组微分方程描述为场景动力学系统;然后利用神经网络作为通用函数逼近器来构造场景黑盒控制器,并基于强化学习实现边缘场景控制器的优化求解;最后以超车切入场景为例,在Matlab/Simulink软件进行仿真验证,结果表明,边缘场景强化生成模型在场景交互博弈、覆盖率和可重复测试等方面具有良好的性能。 相似文献
11.
为了验证自动驾驶汽车决策结果的安全性,提出一种具有自主决策和交互能力的行驶模型生成方法,该行驶模型作为背景车被用于构建自演绎仿真场景来测试自动驾驶汽车的连续决策能力。首先,以强化学习为基础、结合遗传与进化思想,创新地设计并生成了具有自主决策和交互能力的不同风格行驶模型;然后,在模型构建阶段分别训练生成了保守、普通和激进3种风格的行驶模型,其中普通风格行驶模型的训练参数来源于自然驾驶数据集highD的车辆参数分布,保证了该行驶模型的真实性;最后,在普通风格行驶模型的基础上设计并训练出了具有显著激进特征的激进风格行驶模型,以增强自演绎场景的复杂性和测试效果。结果表明:在模型真实性方面,以highD数据集中的跟车速度、车头间距、换道时刻下碰撞时间等参数的分布为真值,研究所生成的普通风格行驶模型的参数分布与真值的平均相似程度为88%,相较于基于规则的智能驾驶人模型(IDM)提升了20.3%;在场景测试性方面,以被测系统为主要责任方的碰撞次数为评估指标,研究生成的不同风格行驶模型所构成的自演绎场景的测试性约是由IDM构成的基线场景的7倍。因此,设计和生成的行驶模型所构成的自演绎场景可以有效支撑面向自动驾驶决策系统的仿真测试。 相似文献
12.
开展自动驾驶测试场景研究能够大幅减少自动驾驶汽车的测试周期与开发成本,是未来评价和提升自动驾驶技术的重要基础。为此,联合基于本体论的场景解构方法,提出了一种基于多通道态势图的自动驾驶场景表征方法,并对多通道态势图的场景聚类与场景复杂度进行研究。首先,对目前的自动驾驶测试方法进行分析,论述道路测试的不足之处以及基于场景的自动驾驶虚拟测试的优点,并对当前的场景解构与表征方法进行了总结;然后,运用本体论解构场景中的信息,并建立场景的本体模型,对模型中的数据属性进行参数化;接着,对真实场景、场景中的语义信息和多通道态势图场景进行对比分析,定义表征场景的多通道态势图的数据格式,将解构出的场景信息重组到多通道态势图的不同层中;之后,以汉明距离为基础设计了多通道态势图的对象层相似度计算方法,采用K均值聚类算法对驾驶场景对象层进行聚类分析,并借助层次分析法对基于多通道态势图的驾驶场景复杂度计算进行研究;最后,以KITTI数据集的一些真实场景为例,绘制场景开始时刻的多通道态势图,分析聚类出的9种对象分布类型。研究结果验证了多通道态势图场景复杂度计算方法的有效性。 相似文献
13.
智能汽车测试是其技术开发与应用中必不可少的环节,封闭场景下测试目标物准确反映真实道路环境下交通对象特性是保障测评结果可信的关键,而道路弱势群体服饰色彩是相应测试目标设计的关键参数,也是智能车测评相关标准中要求的一个主要指标。为此,通过对中国某省份2018~2020年间重大交通安全事故案例的分析和筛查,得出178例弱势道路使用者群体伤亡人员样本,首先提取样本服饰颜色,然后选取适当的色彩空间,将色彩数据从RGB(Red-Green-Blue)空间转换至LUV(Lightness-Chroma)空间。以转换结果作为聚类参数,采用K-means聚类算法,获取受害者样本基于季节、出行方式等不同因素下的服饰代表颜色。区别现阶段欧洲标准中目标物黑色上衣/蓝色长裤的搭配组合,黑色上衣/黑色长裤作用于符合中国国情的自动驾驶场景中测试目标物的服饰颜色更具代表性。鉴于中国新车评价规程(China-New Car Assessment Programme, C-NCAP)选取行人目标物与自行车骑行者目标物,将目标物服饰改为黑色上衣/黑色长裤组合,以测试目标物与测试车辆位置分别构建相对横向及纵向运动的多个场景,... 相似文献
14.
15.
16.
17.
基于交通事故卷宗、交通事故视频信息数据,研究机非混行交通环境下典型交通事故形态,构建了面向机非混行交通环境下的自动驾驶汽车测试场景,旨在针对我国较为特殊的机非混行环境下的自动驾驶汽车的测试场景及测试评价方法提供参考。本文首先分析了自动驾驶测试场景的构建需求,建立交通事故数据筛选标准,得到133例可用于构建自动驾驶汽车测试场景的机动车与非机动车交通事故数据集;其次基于《中华人民共和国道路交通安全法》行驶要求,对133例交通事故的发生地点、车辆行为、道路类型、环境光线等方面进行解构分析;最后通过聚类分析,建立了5类典型的自动驾驶测试场景模型,并分析了不同场景模型的关键要素,为实际道路测试提供理论指导。 相似文献
18.
19.
为解决城市低速条件下智能汽车在避障过程中的路径规划问题,提出面向动态避障的智能汽车滚动时域路径规划方法。首先,划分车道可行区域,利用3次拉格朗日插值法拟合车道边界,并根据"车-路"的相对位置关系将车道区域进一步划分为车道间区域与车道内区域两部分。其次,以区域虚拟力场进行动态交通场景模拟,包括在障碍车周身沿车道方向的虚拟矩形区域斥力场,行驶目标位置的虚拟引力场和车道保持虚拟区域引力场3个部分,然后结合划分的车道区域确定各虚拟力场的作用区域。再次,建立主车动力学与运动学模型,障碍车运动学预测模型,把主车与障碍车无碰撞,主车行驶在车道内区域,趋向目标位置以及保证车辆稳定性作为优化目标,综合车辆模型的控制输入、状态变量等动力学约束条件,构建多目标的滚动时域控制器用于车辆避障路径规划,求解获得前轮转角作为控制量。最后,利用MATLAB和veDYNA软件对提出的路径规划控制系统分别在静态障碍和动态障碍工况下进行联合仿真。研究结果表明:该方法能够很好地解决躲避静态障碍和低速动态障碍车的问题,控制车辆驶向目标位置,并且在避障过程中满足车辆的动力学约束,同时又不会与道路边界发生碰撞,保证了车辆的安全性和稳定性。 相似文献
20.
安全性测试是高等级自动驾驶汽车(Highly Automated Vehicles,HAV,指具备L3级及以上能力的自动驾驶汽车)规模化应用的基本保障。鉴于HAV测试对象与测试标准的变革,传统基于里程的车辆测试方法论不再适用,场景化虚拟测试正成为验证HAV安全性的核心方法。基于与国内外多家HAV研发机构开展虚拟测试合作的基础上,针对测试场景、测试工具和测试方法等方面的技术难点和学术问题进行汇总、归纳和分析。测试场景方面,围绕场景覆盖度的要求,需重点关注测试场景自主划分、自动化仿真生成和未知高风险场景搜寻等理论方法。测试工具方面,在构建HAV自动驾驶系统“环境感知-规划决策-运动执行”一体化仿真工具的基础上,需研究支撑测试场景生成、驾驶行为双向交互和多传感器物理模型融合的高可信仿真技术。测试方法方面,针对海量测试场景、HAV驾驶能力非单调变化等特征,亟待开展覆盖度驱动型测试方法、加速测试方法和多目标测试与评估等的研究。此外,在上述研究挑战的基础上,面向HAV虚拟测试自动化、快速化、一体化和协同化的应用需求,提出HAV虚拟测试仿真即服务(Simulation as a Service,SAAS)的系统架构,并进一步明确HAV安全性诊断分析、系统自主优化训练和面向系统快速迭代升级的测试方法等SAAS重点研究需求。 相似文献