首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a real-time traffic network state estimation and prediction system with built-in decision support capabilities for traffic network management. The system provides traffic network managers with the capabilities to estimate the current network conditions, predict congestion dynamics, and generate efficient traffic management schemes for recurrent and non-recurrent congestion situations. The system adopts a closed-loop rolling horizon framework in which network state estimation and prediction modules are integrated with a traffic network manager module to generate efficient proactive traffic management schemes. The traffic network manger adopts a meta-heuristic search mechanism to construct the schemes by integrating a wide variety of control strategies. The system is applied in the context of Integrated Corridor Management (ICM), which is envisioned to provide a system approach for managing congested urban corridors. A simulation-based case study is presented for the US-75 corridor in Dallas, Texas. The results show the ability of the system to improve the overall network performance during hypothetical incident scenarios.  相似文献   

2.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

3.
Recent studies have demonstrated that Macroscopic Fundamental Diagram (MFD), which provides an aggregated model of urban traffic dynamics linking network production and density, offers a new generation of real-time traffic management strategies to improve the network performance. However, the effect of route choice behavior on MFD modeling in case of heterogeneous urban networks is still unexplored. The paper advances in this direction by firstly extending two MFD-based traffic models with different granularity of vehicle accumulation state and route choice behavior aggregation. This configuration enables us to address limited traffic state observability and to scrutinize implications of drivers’ route choice in MFD modeling. We consider a city that is partitioned in a small number of large-size regions (aggregated model) where each region consists of medium-size sub-regions (more detailed model) exhibiting a well-defined MFD. This paper proposes a route guidance advisory control system based on the aggregated model as a large-scale traffic management strategy that utilizes aggregated traffic states while sub-regional information is partially known. In addition, we investigate the effect of equilibrium conditions (i.e. user equilibrium and system optimum) on the overall network performance, in particular MFD functions.  相似文献   

4.
Although various approaches have been proposed for modeling day-to-day traffic flow evolution, none of them, to the best of our knowledge, have been validated for disrupted networks due to the lack of empirical observations. By carefully studying the driving behavioral changes after the collapse of I-35W Mississippi River Bridge in Minneapolis, Minnesota, we found that most of the existing day-to-day traffic assignment models would not be suitable for modeling the traffic evolution under network disruption, because they assume that drivers’ travel cost perception depends solely on their experiences from previous days. When a significant network change occurs unexpectedly, travelers’ past experience on a traffic network may not be entirely useful because the unexpected network change could disturb the traffic greatly. To remedy this, in this paper, we propose a prediction-correction model to describe the traffic equilibration process. A “predicted” flow pattern is constructed inside the model to accommodate the imperfect perception of congestion that is gradually corrected by actual travel experiences. We also prove rigorously that, under mild assumptions, the proposed prediction-correction process has the user equilibrium flow as a globally attractive point. The proposed model is calibrated and validated with the field data collected after the collapse of I-35W Bridge. This study bridges the gap between theoretical modeling and practical applications of day-to-day traffic equilibration approaches and furthers the understanding of traffic equilibration process after network disruption.  相似文献   

5.
Agent technology is rapidly emerging as a powerful computing paradigm to cope with the complexity in dynamic distributed systems, such as traffic control and management systems. However, while a number of agent-based traffic control and management systems have been proposed and the multi-agent systems have been studied, to the best of our knowledge, the mobile agent technology has not been applied to this field. In this paper, we propose to integrate mobile agent technology with multi-agent systems to enhance the ability of the traffic management systems to deal with the uncertainty in a dynamic environment. In particular, we have developed an IEEE FIPA compliant mobile agent system called Mobile-C and designed an agent-based real-time traffic detection and management system (ABRTTDMS). The system based on Mobile-C takes advantages of both stationary agents and mobile agents. The use of mobile agents allows ABRTTDMS dynamically deploying new control algorithms and operations to respond unforeseen events and conditions. Mobility also reduces incident response time and data transmission over the network. The simulation of using mobile agents for dynamic algorithm and operation deployment demonstrates that mobile agent approach offers great flexibility in managing dynamics in complex systems.  相似文献   

6.
This paper presents a computationally efficient and theoretically rigorous dynamic traffic assignment (DTA) model and its solution algorithm for a number of emerging emissions and fuel consumption related applications that require both effective microscopic and macroscopic traffic stream representations. The proposed model embeds a consistent cross-resolution traffic state representation based on Newell’s simplified kinematic wave and linear car following models. Tightly coupled with a computationally efficient emission estimation package MOVES Lite, a mesoscopic simulation-based dynamic network loading framework DTALite is adapted to evaluate traffic dynamics and vehicle emission/fuel consumption impact of different traffic management strategies.  相似文献   

7.
Macroscopic fundamental diagrams (MFD) of traffic for some networks have been shown to have similar shape to those for single links. They have erroneously been used to help estimate the level of travel in congested networks. We argue that supply curves, which track vehicles in their passage through congested networks, are needed for this purpose, and that they differ from the performance curves generated from MFD. We use a microsimulation model, DRACULA and two networks, one synthesizing the network for Cambridge, England, and one of the city of York, England, to explore the nature of performance curves and supply curves under differing patterns of demand.We show that supply curves differ from performance curves once the onset of congestion is reached, and that the incorrect use of performance curves to estimate demand can thus seriously underestimate traffic levels, the costs of congestion, and the value of congestion relief measures. We also show that network aggregated supply curves are sensitive to the temporal distribution of demand and, potentially, to the spatial distribution of demand. The shape of the supply curve also differs between origin–destination movements within a given network.We argue that supply curves for higher levels of demand cannot be observed in normal traffic conditions, and specify ways in which they can be determined from microsimulation and, potentially, by extrapolating observed data. We discuss the implications of these findings for conventional modelling of network management policies, and for these policies themselves.  相似文献   

8.
频繁发生的客车坠桥事故造成了重大的人员伤亡和财产损失,提高桥梁运营安全水平工作十分迫切。文章在对重庆市桥梁交通安全状况调查的基础上,分析了桥梁路段在设计、管理、交通运行等方面存在的问题,提出从桥头视距、道路养护、警示设施设置、中央分隔带设置等方面进行综合整治的安全改善措施,为桥梁的安全设计与管理提供参考。  相似文献   

9.
10.
Growing concerns regarding urban congestion, and the recent explosion of mobile devices able to provide real-time information to traffic users have motivated increasing reliance on real-time route guidance for the online management of traffic networks. However, while the theory of traffic equilibria is very well-known, fewer results exist on the stability of such equilibria, especially in the context of adaptive routing policy. In this work, we consider the problem of characterizing the stability properties of traffic equilibria in the context of online adaptive route choice induced by GPS-based decision making. We first extend the recent framework of “Markovian Traffic Equilibria” (MTE), in which users update their route choice at each intersection of the road network based on traffic conditions, to the case of non-equilibrium conditions, while preserving consistency with known existence and uniqueness results on MTE. We then exhibit sufficient conditions on the network topology and the latency functions for those MTEs to be stable in the sense of Lyapunov for a single destination problem. For various more restricted classes of network topologies motivated by the observed properties of travel patterns in the Singapore network, under certain assumptions we prove local exponential stability of the MTE, and derive analytical results on the sensitivity of the characteristic time of convergence to network and traffic parameters. The results proposed in this work are illustrated and validated on synthetic toy problems as well as on the Singapore road network with real demand and traffic data.  相似文献   

11.
Traffic control is an effective and efficient method for the problem of traffic congestion. It is necessary to design a high‐level controller to regulate the network traffic demands, because traffic congestion is not only caused by the improper management of the traffic network but also to a great extent caused by excessive network traffic demands. Therefore, we design a demand‐balance model predictive controller based on the macroscopic fundamental diagram‐based multi‐subnetwork model, which can optimize the network traffic mobility and the network traffic throughput by regulating the input traffic flows of the subnetworks. Because the transferring traffic flows among subnetworks are indirectly controlled and coordinated by the demand‐balance model predictive controller, the subnetwork division can variate dynamically according to real traffic states, and a global optimality can be achieved for the entire traffic network. The simulation results show the effectiveness of the proposed controller in improving the network traffic throughput. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
In order to improve cooperation between traffic management and travelers, traffic assignment is the key component to achieve the objectives of both traffic management and route choice decisions for travelers. Traffic assignment can be classified into two models based on the behavioral assumptions governing route choices: User Equilibrium (UE) and System Optimum (SO) traffic assignment. According to UE and SO traffic assignment, travelers usually compete to choose the least cost routes to minimize their own travel costs, while SO traffic assignment requires travelers to work cooperatively to minimize overall cost in the road network. Thus, the paradox of benefits between UE and SO indicates that both are not practical. Thus, a solution technique needs to be proposed to balance UE and SO models, which can compromise both sides and give more feasible traffic assignments. In this paper, Stackelberg game theory is introduced to the traffic assignment problem, which can achieve the trade-off process between traffic management and travelers. Since traditional traffic assignments have low convergence rates, the gradient projection algorithm is proposed to improve efficiency.  相似文献   

14.
In this paper, a model-based perimeter control policy for large-scale urban vehicular networks is proposed. Assuming a homogeneously loaded vehicle network and the existence of a well-posed Network Fundamental Diagram (NFD), we describe a protected network throughout its aggregated dynamics including nonlinear exit flow characteristics. Within this framework of constrained optimal boundary flow gating, two main performance metrics are considered: (a) first, connected to the NFD, the concept of average network travel time and delay as a performance metric is defined; (b) second, at boundaries, we take into account additional external network queue dynamics governed by uncontrolled inflow demands. External queue capacities in terms of finite-link lengths are used as the second performance metric. Hence, the corresponding performance requirement is an upper bound of external queues. While external queues represent vehicles waiting to enter the protected network, internal queue describes the protected network’s aggregated behavior.By controlling the number of vehicles joining the internal queue from the external ones, herewith a network traffic flow maximization solution subject to the internal and external dynamics and their performance constraints is developed. The originally non-convex optimization problem is transformed to a numerically efficiently convex one by relaxing the performance constraints into time-dependent state boundaries. The control solution can be interpreted as a mechanism which transforms the unknown arrival process governing the number of vehicles entering the network to a regulated process, such that prescribed performance requirements on travel time in the network and upper bound on the external queue are satisfied. Comparative numerical simulation studies on a microscopic traffic simulator are carried out to show the benefits of the proposed method.  相似文献   

15.
Abstract

The context for network modelling in traffic management and control is described in terms of the current area‐wide nature of traffic management and the range of objectives to which it can contribute. Representation of a road system and traffic management measures in terms of nodes and links and parameters associated with them is described. It is shown that the pattern of traffic has to be represented not only in terms of flows on links of the network but also in terms of numbers of movements per unit time between points of entry to and points of exit from the area being modelled. In modelling so far, these numbers of movements are regarded as given, but the routes taken are estimated by traffic assignment. Models can so far be used for comparison of a range of given schemes and for optimization of traffic control within a scheme. Variation over time is a central feature of the modelling, and this requires the use of time‐dependent queueing theory, and the specification of numbers of movements for a succession of periods of between 10 and 30 minutes. Theoretical approaches to the resulting problems of modelling and optimization are discussed, and the ways in which these are supplemented by heuristic methods in currently available models is described. Some requirements‐for further research are outlined.  相似文献   

16.
Diverging junctions are an important type of bottlenecks, which can reduce capacities and initiate and propagate traffic congestion in a road network. In this paper, we propose a kinematic wave theory for modeling dynamics of non-cooperative diverging traffic, in which traffic dynamics of vehicles to one direction are assumed to be independent of those to other directions instantaneously. During a short time interval, the kinematic wave model of diverging traffic is decoupled into a number of nonlinear resonant systems. From analytical solutions to the Riemann problem of a decoupled system, a new definition of partial traffic demand is introduced, so that diverging flows can be easily computed with the supply–demand method. Then a Cell Transmission Model is proposed to solve the kinematic wave model of diverging traffic by taking into account of the interactions among different traffic streams. Simulation results demonstrate that vehicles follow the First-In-First-Out principle in the long run, and the model converges when we decrease the cell and time-step sizes. In addition, it is shown that traffic streams to different directions segregate in a selfish manner, and the total throughput of a diverging junction is not maximized as in existing diverge models. In the future, more theoretical and empirical studies are needed for a better understanding of this and other diverge models.  相似文献   

17.
Pricing is considered an effective management policy to reduce traffic congestion in transportation networks. In this paper we combine a macroscopic model of traffic congestion in urban networks with an agent-based simulator to study congestion pricing schemes. The macroscopic model, which has been tested with real data in previous studies, represents an accurate and robust approach to model the dynamics of congestion. The agent-based simulator can reproduce the complexity of travel behavior in terms of travelers’ choices and heterogeneity. This integrated approach is superior to traditional pricing schemes. On one hand, traffic simulators (including car-following, lane-changing and route choice models) consider travel behavior, i.e. departure time choice, inelastic to the level of congestion. On the other hand, most congestion pricing models utilize supply models insensitive to demand fluctuations and non-stationary conditions. This is not consistent with the physics of traffic and the dynamics of congestion. Furthermore, works that integrate the above features in pricing models are assuming deterministic and homogeneous population characteristics. In this paper, we first demonstrate by case studies in Zurich urban road network, that the output of a agent-based simulator is consistent with the physics of traffic flow dynamics, as defined by a Macroscopic Fundamental Diagram (MFD). We then develop and apply a dynamic cordon-based congestion pricing scheme, in which tolls are controlled by an MFD. And we investigate the effectiveness of the proposed pricing scheme. Results show that by applying such a congestion pricing, (i) the savings of travel time at both aggregated and disaggregated level outweigh the costs of tolling, (ii) the congestion inside the cordon area is eased while no extra congestion is generated in the neighbor area outside the cordon, (iii) tolling has stronger impact on leisure-related activities than on work-related activities, as fewer agents who perform work-related activities changed their time plans. Future work can apply the same methodology to other network-based pricing schemes, such as area-based or distance-traveled-based pricing. Equity issues can be investigated more carefully, if provided with data such as income of agents. Value-of-time-dependent pricing schemes then can also be determined.  相似文献   

18.
文章针对交通方式的合理比例分配问题,提出了交通级配的概念,构建了城市交通级配体系,并基于对西部河谷型城市道路网络特征的分析,以兰州市为例,提出了相应的交通管理措施,为城市绿色交通建设的实现提供方法借鉴。  相似文献   

19.
This paper reports our experiences with agent-based architectures for intelligent traffic management systems. We describe and compare integrated TRYS and TRYS autonomous agents, two multiagent systems that perform decision support for real-time traffic management in the urban motorway network around Barcelona. Both systems draw upon traffic management agents that use similar knowledge-based reasoning techniques in order to deal with local traffic problems. Still, the former achieves agent coordination based on a traditional centralized mechanism, while in the latter coordination emerges upon the lateral interaction of autonomous traffic management agents. We evaluate the potentials and drawbacks of both multiagent architectures for the domain, and develop some conclusions respecting the general applicability of multiagent architectures for intelligent traffic management.  相似文献   

20.
This paper presents a novel methodology to control urban traffic noise under the constraint of environmental capacity. Considering the upper limits of noise control zones as the major bottleneck to control the maximum traffic flow is a new idea. The urban road network traffic is the mutual or joint behavior of public self-selection and management decisions, so is a typical double decision optimization problem.The proposed methodology incorporates theoretically model specifications. Traffic noise calculation model and traffic assignment model for O–D matrix are integrated based on bi-level programming method which follows an iterated process to obtain the optimal solution. The upper level resolves the question of how to sustain the maximum traffic flow with noise capacity threshold in a feasible road network. The user equilibrium method is adopted in the lower layer to resolve the O–D traffic assignment.The methodology has been applied to study area of QingDao, China. In this illustrative case, the noise pollution level values of optimal solution could satisfy the urban environmental noise capacity constraints. Moreover, the optimal solution was intelligently adjusted rather than simply reducing the value below a certain threshold. The results indicate that the proposed methodology is feasible and effective, and it can provide a reference for a sustainable development and noise control management of the urban traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号