首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
针对智能车辆纵向运动时的交通道路适应性问题,考虑路面附着系数和前车运动速度等因素,研究了智能车辆纵向运动决策与控制方法。论文研究了基于车头时距的纵向运动决策方法并建立不同驾驶行为的目标车速模型,运用变论域模糊推理算法设计了目标加速度模型。基于纵向动力学模型,运用自适应反演滑模控制算法建立了驱动控制器和制动控制器。对高附着系数路面和低附着系数路面的行驶工况进行仿真试验验证,结果表明,在不同的附着系数路面和前车变速行驶条件下,智能车辆能实时、合理地决策目标车速、目标加速度,实现安全、高效、稳定的跟驰。  相似文献   

2.
为提升汽车的主动安全,对车辆自动紧急制动系统控制策略进行研究。利用分层控制的思想对控制策略进行建模,上层控制器为对车辆制动减速度进行决策的预碰撞时间模型,根据汽车追尾事故深度调查的驾驶员紧急制动数据分析制动系统的制动减速度,在考虑舒适性的条件下确定预碰撞时间阈值。下层控制器按照上层控制器输出的制动减速度,分析车辆轮胎模型和制动系统的关系,通过PID控制调节制动压力对车辆进行控制。在安全评价规程标准工况下验证控制策略的可靠性,通过追尾事故场景的重建来验证控制策略的有效性。仿真结果表明:设计的控制策略在相对车速65km/h以内时能有效避撞,而高于65km/h时能最大程度地降低碰撞车速,减小伤害。  相似文献   

3.
车辆防抱死控制系统(ABS)的目标控制参数在不同路面上存在很大差异,所以在不同路况下汽车电控系统所采取的控制策略和算法也有所差别。以汽车主动安全装置ABS为基础,在建立了车辆模型和进行滑移率估算的前提下.设计了道路识别控制器。考虑到轮胎非线性的影响,对变附着系数路面进行了ABS制动模拟试验。结果表明:基于路面识别技术的ABS控制系统能准确判断出路面状况,并据此调整控制策略,以使车辆获得最大的制动减速度和最短的制动距离。试验表明.该系统具有较好的跟踪性。  相似文献   

4.
针对分布式驱动电动汽车(电动轮汽车)在复杂工况下紧急制动时易发生侧滑、甩尾和激转等问题,提出了电动轮汽车电液复合制动方向稳定性分层控制策略。该策略的决策层包含总制动转矩和修正横摆力矩的计算,分配层包含制动转矩最优分配和修正横摆力矩分配算法;协调层则对分配结果进行稳定协调。通过Simulink与Carsim联合仿真,分别对低附着路面转弯制动和对开路面紧急制动两种工况进行验证。结果表明,提出的分层控制策略在保证车辆制动效能的基础上,能有效地改善车辆制动时的方向稳定性。  相似文献   

5.
轮毂电机驱动车辆各轮转矩精确可控且响应迅速的特点适用于越野工况,但越野路面起伏不一且附着条件多变,因此,开发基于越野工况辨识的车辆驱动力控制策略,对提升轮毂电机驱动车辆的纵向行驶稳定性具有重要意义。基于动力学模型分析路面附着与路面几何特征,确定可用于越野工况辨识的车辆特征参数集;针对车轮悬空垂向载荷估计失真现象,且由于地面垂向力的实际变化导致车辆垂向载荷分配比例的改变,修正了垂向载荷的计算;利用各特征参数的差异与越野工况的映射关系判定工况属性,采用模糊识别法界定4种地形工况;驱动力控制上层考虑工况与驾驶员影响因素,通过越野工况辨识结果决策驱动利用系数,作为前馈期望转矩调节权重;中层通过四轮垂向载荷得到转矩分配系数,设计驱动力分配算法;下层针对车辆在越野工况下出现车轮滑转与悬空状态,对车轮进行动态转矩补偿。仿真测试与实车验证表明,越野工况辨识结果与预期相符,驱动力控制策略综合优化了车辆稳定性和动力性。  相似文献   

6.
鉴于传统电子液压制动系统连续制动易产生"热衰退"现象,结构缺陷导致的制动响应慢,制动系统与电控系统衔接差等缺点,提出了一种基于混杂自动机模型的电磁与摩擦集成制动方法。首先分析集成制动器制动时的工作特点以及不同情况下对应的工作模式(纯电磁制动、纯摩擦制动以及集成制动),并确定3种制动模式的切换条件,通过逻辑门限算法将其实现。根据制动时车辆既具有连续运动状态又有离散状态的混杂特性,使用MATLAB/Stateflow建立基于制动模式切换系统的推广自动机模型,并根据制动模式切换控制策略,对3种制动模式切换进行试验,验证制动模式切换控制策略的合理性。最后选取车辆制动初速度为28 m·s-1的直线制动工况,分别在高附着系数(0.85)以及低附着系数(0.3)的路面条件下,通过试验平台对控制算法和制动系统性能进行试验验证。研究结果表明:所提出的汽车混杂理论模型以及优化方法在在低附着系数(0.3)路面条件下,集成制动方法较传统液压制动系统缩短5.12%的制动距离,缩短制动时间0.3 s;在高附着系数(0.85)路面条件下,集成制动方法较传统液压制动系统缩短5.66%的制动距离,缩短制动时间0.2 s,能有效提高制动效能。  相似文献   

7.
为了在不同工况中,同时兼顾轨迹跟踪算法的跟踪精度,计算速度与车辆稳定性,提出基于不同车速和路面附着系数的参数自适应MPC算法。在线性时变MPC的基础上增加车辆稳定性控制,并基于路面附着系数设计2种控制策略:在高附着系数路面,针对不同车速优化预测时域与控制时域;在低附着系数路面,开启车辆稳定性控制并基于改进粒子群算法优化权重参数。2种策略在保证跟踪精度与车辆稳定性的基础上提高计算速度。设计基于前馈神经网络的路面识别算法从而为多参数自适应轨迹跟踪算法识别所在道路的路面附着系数,利用CarSim-Simulink平台进行联合仿真。研究结果表明:路面识别算法的平均绝对百分比误差为12.77%,足够满足多参数自适应轨迹跟踪算法的需求;相较于传统线性时变MPC跟踪算法,低速工况下参数自适应轨迹跟踪算法在高附着系数和低附着系数的路面上,横向平均绝对误差分别降低了20.7%和24.6%;高速工况下横向平均绝对误差分别降低了66.2%和50.7%;综合所有试验,算法的计算时间减少了40.2%;在保障车辆稳定性的同时降低算法的计算时间。研究成果针对不同车速与附着系数对轨迹跟踪算法参数进行优化,利用自适应预...  相似文献   

8.
分析了经典自动紧急制动(AEB)控制策略的发展现状及局限性,从人、车、路以及环境等因素出发,总结了AEB控制策略在驾驶员特性、车辆属性、路面特性、应用场景等方面的完善与发展过程。驾驶员特性影响个性化的驾驶员需求,车辆的感知、结构与制动特性等引起车辆固有属性的差异,不断更新的路况导致路面附着系数实时变化,多样化的工况场景决定了AEB控制策略的应用条件,研究表明,上述动态变化的因素要求AEB控制策略应具有一定的适应性与鲁棒性,对AEB控制策略的发展具有十分重要的作用,综合考虑人、车、路以及环境等因素的AEB控制策略是提高AEB系统可靠性与安全性的必要条件。  相似文献   

9.
针对半挂汽车列车转弯制动时易发生折叠等危险工况的现象,采用Trucksim和Simulink联合仿真的方法,建立了半挂汽车列车转弯制动的动力学模型,并利用实车道路试验数据验证了模型的准确性.设计了半挂汽车列车转弯制动稳定性的控制器和模糊控制策略,并选择高、中、低三种附着系数路面对模糊控制策略和传统逻辑门限控制策略的效果进行了对比分析.结果表明:半挂汽车列车在三种附着系数路面上转弯制动时,模糊控制比逻辑门限控制在车辆制动稳定性能上有所改善,可有效地缩短制动距离和预防折叠现象的发生.  相似文献   

10.
ABS系统与车辆的匹配是一个亟待解决的课题。为了优化针对ABS系统性能的试验方法,通过一系列不同道路附着系数、不同车辆行驶速度及车辆负荷的工况下,做了相关道路试验,以验证ABS系统的性能,并根据对车辆制动减速度和车轮转速的监测结果,验证试验方法的规范性,提出了增加车辆横摆角度和横摆角速度以评价车辆制动性能的建议。  相似文献   

11.
针对半挂汽车列车制动时轴荷转移大、制动距离受载荷影响大的问题,提出了非紧急制动工况基于动态轴荷的制动力分配算法。根据轴荷变化动态调整制动力分配,使各轴利用附着系数与车辆制动强度一致,同时根据车辆实际制动强度与理想制动强度差值调整制动力,使车辆在相同制动过程中制动距离不受载荷影响。对比通过软件进行常规制动与采用该算法的电控系统车辆在不同载荷下的制动仿真结果表明,该算法可动态分配制动力并进行减速度控制。  相似文献   

12.
针对现有紧急情况下车辆的碰撞危险评估算法大多只考虑量测噪声干扰带来的不确定性,提出一种综合考虑路面动态环境不确定性和量测噪声干扰的汽车碰撞危险估计算法。首先,构建"路面状况-车速-最大减速度"模糊推理模型,即由路面状况和自车车速,经模糊推理智能算法快速获取车辆制动最大减速度;建立基于运动学的预测模型,考虑上述路面附着状况动态变化和传感器量测噪声带来的不确定性,采用蒙特卡洛法实时计算自车当前行驶环境下的碰撞概率。根据汽车动力学和道路有关参数预测车辆紧急制动和转向的轨迹,从而得到制动避撞与换道避撞的碰撞概率。以交叉路口和追尾工况为例,对比分析了不同路面情况下制动避撞和转向避撞的碰撞概率,从而为车辆选择合理的避撞方式。结果表明,所提出的危险估计算法与真实交通动态环境下的紧急避撞行为比较相符,具有良好的有效性和可行性。  相似文献   

13.
针对独立驱动电动汽车在高附着系数路面高速急转时易发生侧翻事故,在低附着系数路面急转易发生侧滑失稳事故,且单一控制器在不同附着系数路面适应性较差等问题,根据独立驱动电动汽车特点设计了基于分层式结构的稳定性集成控制器。建立了整车动力学模型,并进行了车辆状态参数估计;设计了稳定性集成控制器的控制策略,对车辆的侧倾、横向稳定性状态判定条件和协调策略的制定进行了研究,分别设计了侧倾稳定性控制器和横向稳定性控制器;设置了路面附着系数0.9到0.2的对接路面仿真工况,并在此工况下对所设计的控制器的控制性能进行了仿真测试。结果表明,所设计的稳定性集成控制器相比于单一控制器具有更好的适应性,可有效降低车辆高速行驶过程中的横向载荷转移系数、质心侧偏角等状态量,提高车辆行驶的稳定性和安全性。  相似文献   

14.
史培龙  赵轩  陈子童  余强 《汽车工程》2023,(1):104-111+146
针对长下坡路段行驶的重型载货汽车因驾驶人路况不熟悉而行车制动系统使用不当引发制动器热衰退风险的问题,本文提出了基于道路行驶工况辨识的重型载货汽车排气制动系统主动控制策略。考虑到山区路段道路纵向坡度信息难准确获取,且制动踏板动作特征与其他路段存在显著的差异,文中选取时间窗内制动踏板平均开度、持续作用时间和制动踏板作用时间比例分别建立了下坡路段行驶制动工况和其他路面制动工况,利用制动踏板动作与开启排气制动系统的因果关系建立了具有连续时间序列特性隐马尔可夫模型。考虑到时间窗长度对控制效果的影响,文中建立时间窗长度为30、60、90和120 s的4种模型,利用京昆高速雅安-西昌段K25-K174左线和右线试验数据进行离线训练和在线辨识验证。道路试验和仿真结果表明:文中提出的控制策略能够准确辨识车辆行驶工况,能够实现排气制动系统主动控制,降低了对驾驶人的高度依赖,从而提高了重型载货汽车下坡路段行驶安全性。  相似文献   

15.
针对汽车防抱死制动系统ABS控制的研究,论文从实车应用角度提出了一种新型ABS控制策略。控制策略以滑移率为主要控制目标,以车轮角加速度为辅助控制目标进行了逻辑门限值控制,基于电控制动系统硬件在环试验平台,利用Car Sim与Matlab/Simulink搭建整车仿真模型并编写ABS控制策略程序,选取车辆模型和高速对开路面紧急制动仿真试验工况进行硬件在环试验验证。试验结果表明:设计的新型ABS控制策略具有良好的制动效能且提高了制动时的方向稳定性。  相似文献   

16.
针对传统自动紧急制动策略制动减速度波动大、制动过程乘坐舒适性及弯道制动安全难以保障的问题,提出一种基于深度强化学习的汽车自动紧急制动策略。建立了包括纵向、横向及横摆运动的3自由度车辆模型,根据碰撞预警时间设计奖励函数,应用深度确定性策略梯度算法设计了基于深度强化学习的自动紧急制动策略,开展了直道行驶工况与弯道行驶工况仿真测试。结果表明,所提出的策略具有很好的收敛性,在满足中国新车评价规程(C-NCAP)的直道行驶安全性要求的同时,提高了紧急制动时的乘坐舒适性,且实现了汽车弯道行驶的自动紧急制动,提高了弯道行驶安全性。  相似文献   

17.
为了有效降低长大下坡路段重型载货汽车行车制动器的使用频率和驾驶强度,基于持续制动匹配等级和广义生长剪枝径向基函数(GGAP-RBF)减速度估计模型提出持续制动匹配控制策略。首先以重型载货汽车为研究对象,基于发动机制动、排气制动和电涡流缓速器制动试验研究持续制动力随行驶车速的变化关系;然后以当前车速、车速差以及道路坡度作为输入参数,需求减速度作为输出参数,基于GGAP-RBF建立需求减速度估计模型;最后依据需求制动力与等级制动力差值最小原则选择持续制动匹配等级,同时分别进行定坡度工况下试验验证和变坡度工况下仿真研究以验证控制效果。结果表明:4.2%定坡度工况下,采用所提出的控制策略持续制动等级仅切换2次,比控制最优驾驶人切换少1次,速度变化基本一致;13 160m变坡度工况下,能够实现稳定减速,150m后达到预定车速,随后在60~62km·h~(-1)范围内变化,具有变坡度工况适应性强的特点;所提出的控制策略能够依靠持续制动匹配分级控制而有效降低行车制动器的使用频率和驾驶强度,实现车辆减速和稳定车速下坡行驶的效果。  相似文献   

18.
文章利用trucksim重型汽车动力学仿真软件,对六轮双轴重型汽车在低附着路面左右车轮附着系数不一致情况下进行紧急制动的行驶工况进行了仿真研究。研究结果表明在低附着路面进行紧急制动时,对制动轮进行制动压力控制,有ABS控制的重型汽车比没有ABS控制的重型汽车具有更好地行驶稳定性。但在低附着路面上,有ABS控制的重型汽车比没有ABS控制的重型汽车的制动距离增加了很多,这对重型汽车的行车安全性非常不利。  相似文献   

19.
针对车辆纵向跟驰过程中的避撞问题,基于车辆运动状态和路面附着系数等因素,提出了一种改进的安全距离模型。针对驾驶员和主动制动系统的协调控制问题,采用可拓决策的方法,以两车实际间距和碰撞时间为参考变量建立二维可拓集合,划分动态安全边界,不同域中分别采用自由驾驶模式、协调制动模式和主动制动模式。基于避撞模型,对被选为主动制动控制器的径向基神经网络的模型进行训练,得出理想制动压力。通过软件仿真和台架硬件在环仿真,对所提控制策略进行验证,结果表明所提策略能有效避免车辆纵向碰撞,改善了制动平稳性和安全性。  相似文献   

20.
由于视线障碍物造成的“鬼探头”事故已经成为当前城市道路交通事故的主要类型之一。针对汽车碰撞视线遮挡条件下横穿的弱势道路使用者(VRU)的场景, 设计了1种基于碰撞时间比和安全制动距离的避撞策略, 建立车辆与VRU的交通状态数学模型, 分析“鬼探头”场景下的制动避撞临界距离。结合临界距离和车辆与VRU的碰撞时间比, 将可以避免碰撞的场景分为3种工况, 分别采用不同的制动减速度, 建立自动紧急制动避撞策略。通过Euro NCAP CPNC测试场景对该策略与传统TTC制动算法进行比较分析。结果表明, 在Euro NCAP CPNC测试场景中, 自车利用该避撞策略在理想情况下能够在更高的车速情况下完成避撞; 在不能避免碰撞的高速行驶工况中较传统TTC算法能够更加有效降低碰撞速度, 同时降低事故重伤风险和死亡风险, 提高车辆的安全性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号