首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
对车辆直道行驶时障碍物突现和弯道路面状况紧急变化时的车辆操作特性进行了研究。采用一种新型的交通环境驾驶模拟装置,研究紧急避障时的操作方式和反应时间及弯道行驶时的转向回避模式。结果表明,在直道行驶紧急避障操作时,年轻被试者比年长被试者的制动反应时间少约0.25 s,且制动操作比转向操作要早,车辆转向共振频率对紧急避障操作有一定的影响。  相似文献   

2.
紧急避障工况下的驾驶人操作具有响应快且动作幅值较大的特点,传统预瞄驾驶人模型已不能适应紧急避障工况的需求,故考虑实际避撞场景开发相应的驾驶人模型就显得尤为必要。针对此种状况,基于驾驶模拟器,结合紧急避撞工况实际驾驶人操纵数据,提出了一种融合预瞄与势场栅格法的紧急避撞驾驶人模型。首先针对紧急避撞工况下车辆运动特点,建立车辆横、纵向耦合非线性动力学模型,并给出其状态空间方程描述;其次,离线仿真分析紧急避撞系统特征,并结合线性二次型最优控制,建立最优曲率预瞄+跟踪误差反馈驾驶人模型;再者,基于紧急避撞工况下真实驾驶人经验转向行为数据,开发基于势场栅格法的驾驶人模型,为进一步提高驾驶人模型对避障行驶工况的适应性,将基于势场栅格法的驾驶人模型与最优曲率预瞄+跟踪误差反馈驾驶人模型进行融合,并基于Sigmoid函数实现两者输出的权重分配;最后,针对所提出的融合预瞄与势场栅格法的驾驶人模型,开展基于避撞台架的驾驶人在环仿真试验以及实车试验。研究结果表明:在紧急避撞工况下,对比最优曲率预瞄+跟踪误差反馈驾驶人模型,融合预瞄与势场栅格法的驾驶人模型输出的转向动作与实际驾驶人行为较为接近,可在保证避障安全性的前提下,兼顾避障路径跟踪精度与车辆行驶的稳定性。  相似文献   

3.
针对自主驾驶车辆的转向避撞问题,提出了一种分层避撞控制方法。上层路径规划控制器基于车辆运动学模型,引入人工势场函数,采用障碍物与车辆的相对状态描述车辆碰撞风险。基于模型预测控制理论,构建优化目标函数,规划最优避撞路线,并采用五次多项式拟合局部避撞路径。对于下层路径跟踪控制器,则建立车辆非线性动力学模型,构建基于最优转向盘转角输入的路径跟踪优化函数,实现局部避撞路径跟踪。最后搭建了Carsim/Matlab联合仿真平台,对被控车辆在不同路面、不同车速情况下的避障路径规划和跟踪效果进行了仿真。结果表明:上层控制器能根据障碍物信息实时规划局部避撞路径,下层控制器能控制车辆平滑、稳定地跟踪参考路径,从而实现车辆的主动避撞功能。  相似文献   

4.
针对车辆在不同路面条件下的主动避障问题,提出一种考虑路面附着系数的行车风险场避障路径规划方法。首先,建立了包含道路边界风险场、目标引力场和障碍物风险场的行车风险场;基于容积卡尔曼滤波算法实时估算路面附着系数,并对考虑路面附着系数的行车风险场函数进行负梯度求导,得到风险值下降最快的避障路径;然后,采用5次多项式拟合优化得到满足车辆约束的避障参考路径;最后,采用模型预测控制算法跟踪避障路径。仿真结果表明:在相同车速下,路面附着系数越小,避障时的横向加速度越小,横向加速度的标准差越小,避障效果越平顺。  相似文献   

5.
四轮独立转向-独立驱动电动车(4WIS-4WID EV)具有低速机动性强、高速稳定性好的特点,是一种理想的智能车构型。本文中针对4WIS-4WID EV进行了主动避障系统的设计,主要包括避障路径规划和跟踪控制。首先基于车辆运动学模型,提出了采用七次多项式的避障路径规划算法;然后基于简化2自由度车辆动力学模型,设计了模型预测路径跟踪控制器;为提高车辆主动避障过程中的操纵稳定性,路径跟踪控制算法采用四轮转向与直接横摆力矩控制技术。通过不同附着系数路面工况与侧风扰动工况仿真,验证了所设计的主动避障系统具有良好的避障能力和鲁棒性。  相似文献   

6.
为使车辆在紧急情况下能够快速稳定地完成换道避障,本文中将车辆纵向控制和侧向控制结合在一起,综合考虑车辆在紧急制动转向避障的过程中由于路面附着条件的限制可能会造成车辆失稳问题,在上层进行避障规划过程中加入基于哈密顿能量函数的理想纵向力和侧向力分配,并搭建稳态预测动态校正驾驶员模型跟踪规划的期望路径。然后利用Matlab/Simulink搭建3自由度车辆动力学模型,并基于Carsim和Labview的硬件在环试验对理想纵向力和侧向力的分配进行验证,仿真结果表明,所计算的纵、侧向力分配规律能够在车辆紧急制动转向避障时,在较短的时间和纵向距离条件下行驶到相邻车道。最后通过实车试验进一步验证了所提出方法的有效性。  相似文献   

7.
为了提高智能汽车紧急变道轨迹规划的实时性和适应性,将紧急变道过程分为初始阶段和跟踪阶段,初始阶段的轨迹由优秀驾驶人紧急变道模型产生,跟踪阶段的轨迹采用Sigmoid函数规划出紧急避让路径。首先通过聚类分析处理优秀驾驶人转向操作的实车试验数据,拟合得出紧急变道过程中的方向盘转角随时间的关系(即驾驶人紧急变道模型),作为智能汽车在紧急变道初始阶段不同速度下车辆控制的输入量。然后通过建立与求解约束方程,满足避撞约束、侧向位移约束以及最大侧向加速度约束,得出Sigmoid函数表达式,作为智能汽车在紧急变道过程跟踪阶段的参考路径。最后利用hp自适应伪谱法加入切换点的物理量约束,逼近全局正交多项式的状态量和控制量,自动调整和处理2个阶段的切换点位置和衔接问题,以最小变道距离为目标对跟踪阶段的变道轨迹进行优化。运用PreScan与MATLAB对4种不同工况下的紧急变道轨迹规划进行联合仿真。结果表明:提出的轨迹规划与优化方法在满足各项约束的情况下成功避开障碍物,同时缩短了需要优化的轨迹,优化时间都小于0.9 s,并且与基于多项式函数轨迹规划方法相比,该方法能够以距障碍物较远的距离避开障碍物,在不同的车辆速度、道路曲率和障碍物宽度的复杂工况下具有更好的适应性。  相似文献   

8.
在前方道路突然出现障碍物的危急情况中,车辆采用自动紧急转向来避障,由于情况紧急,车辆在转向过程中仍可能与其他道路参与者发生碰撞事故。当车辆采用自动紧急转向避让道路前方路口突然闯入的车辆时,与对向来车发生斜角碰撞,由此,对该特定场景的转向-碰撞全过程进行一体化仿真,分析乘员在转向阶段因车辆横摆和侧倾运动引起的离位现象以及离位在碰撞过程中对乘员的动态响应和损伤造成的影响。首先,建立由自动紧急转向导致的斜角碰撞场景;其次,在该场景中,确定车辆在最小避障距离内的紧急变道路径,并计算车辆和乘员在变道过程中的动态响应;碰撞事故发生时刻选取为本车在紧急转向过程中易与对向来车发生碰撞的时刻,且在该时刻乘员具有较大潜在损伤风险;然后,在时域上结合车辆转向阶段和碰撞阶段的运动响应,将其作为整体输入,对乘员在全过程的动态响应进行一体化仿真;最后,分析离位对乘员损伤的影响规律以及影响因素。研究结果表明:紧急转向会导致乘员产生明显的横向离位,降低了约束系统对乘员的保护效果,致使乘员头部和颈部在碰撞中的人车相对运动速度和相对位移明显增大;横向离位使得乘员头部偏离安全气囊中央区域,降低了安全气囊的保护作用;这2个因素导致了乘员头部损伤评价指标HHIC36增加7.20倍,颈部损伤评价指标Nij增加2.32倍;乘员头、颈部损伤具有随横向离位程度减小而减小的趋势。  相似文献   

9.
针对斯坦利(Stanley)跟踪算法无法更好地同时满足无人驾驶路径跟踪的精确度和平滑性要求的问题,根据车辆的航向角、横向偏差、车速等特性,基于合适的预瞄距离,采用纯跟踪(Pure Pursuit)算法对Stanley算法中车轮转角的计算方式进行改进,提出一种新的融合算法,实时计算车辆在当前车速下合适的车轮转角。仿真结果表明,相比于Stanley算法,所提出的融合算法在不失跟踪精确度的情况下,不同车速下跟踪平滑性均有较大提升。实车试验结果表明,在20 km/h车速下,所提出融合算法的跟踪路径比原Stanley算法的跟踪路径有更好的精确度和平滑性。  相似文献   

10.
基于人工势场的引导策略,通过建立包括车道边界和障碍车的道路危险势场,采用弹性绳模型实现了车辆在高速公路上的车道保持和紧急避障功能。为了保证车辆在高速情形下避障的安全性,在障碍车辆原有势场基础上,在障碍车辆的前后各增加一个引导势场,使车辆能够提前避障,从而避障过程更安全。再结合Carsim仿真,在车辆的路径跟随过程中观察主车的横摆角速度的变化来判断车辆的稳定性。对直道和弯道两种情形进行避障仿真对比分析,结果表明:在障碍车辆前后添加引导势场能提前避障,从而使避障过程更安全。  相似文献   

11.
针对汽车高速紧急换道避障轨迹规划与跟踪控制问题,提出一种基于Radau伪谱法的汽车高速紧急换道避障最优控制策略。首先,采用汽车运动学与动力学模型相结合的方式将汽车高速紧急换道避障轨迹规划和跟踪控制问题转换成汽车高速紧急换道避障最优控制问题,再通过Radau伪谱法将其转化为非线性规划问题,从而直接得到汽车高速紧急换道避障轨迹规划和跟踪控制问题的最优解,即:目标轮胎纵向滑移率和目标前轮转向角速度。随后,采用离散滑模变结构控制理论设计了对参数摄动和外界干扰具有强鲁棒性的车轮滑移率自适应滑模跟踪控制律,实现目标轮胎纵向滑移率的跟踪控制。最后,基于高精度的车辆动力学软件构建模型在环仿真系统,验证所提控制策略的可行性和有效性。  相似文献   

12.
针对行人违规过街导致人车碰撞事故频发的交通安全问题,采用改进人工势场法并考虑行人行为的不确定性,对车辆避撞路径进行动态规划。为表达行人违规过街时的方向不确定性,提出一种基于加权效用函数法的行人过街方向概率模型,并以此为基础预测行人位置。针对动态障碍的转向避撞轨迹规划,以避撞安全距离为基础,提出一种相对位置自适应的变长轴椭圆障碍势能场,可根据动态行人的预测位置实时规划避撞路径。在4种工况下进行了仿真对比分析,结果表明:所提出的路径规划方法可根据行人的预测位置,有效地规划出更平滑的安全避障路径。  相似文献   

13.
动态路径规划是自动驾驶汽车避障控制的关键技术。针对自动驾驶汽车弯道超车工况,建立基于改进人工势场(Artificial Potential Field, APF)的动态路径规划方法。为使基于APF的动态路径规划方法能运用于包含弯曲道路的复杂交通环境,将已在直道环境验证过的道路APF函数通过极坐标系与笛卡尔坐标系的相互转换,建立考虑道路曲率的弯曲道路APF函数。针对根据车辆质心位置判断车辆碰撞风险方法存在的缺陷,提出考虑车辆体积的碰撞风险预判方法,建立综合考虑车辆位置、速度和体积的障碍车辆APF函数。基于弯曲道路APF和改进障碍车辆APF,建立道路环境综合APF,引导车辆实现弯道超车。为避免目标函数中子目标相互干涉,提高弯道超车安全性,提出根据本车与障碍车辆相对位置关系自适应调整权重矩阵的方法。基于Carsim/Simulink联合仿真平台,分别在静态障碍车辆和动态障碍车辆2种工况下,验证自动驾驶汽车弯道超车动态路径规划的有效性。研究结果表明:所建立的弯曲道路APF能引导车辆转弯行驶,避免冲出车道;目标函数权重自适应调整方法能根据超车过程动态调整子目标的权重,规划出符合道路交通安全法规的路径,避免车辆超车时提前折返原车道,提高了超车安全性;考虑车辆体积的障碍车辆APF提高了车辆碰撞风险的预判精度,有效避免碰撞事故发生。  相似文献   

14.
为实现不同速度工况下的车辆稳定转向和路径跟踪,提出了一种机器人驾驶车辆横向自适应反演切换控制方法。构建了7自由度车辆横纵向动力学模型,并基于等效转动惯量的概念,建立了驾驶机器人转向机械手动力学模型。定义了转向机械手每个子系统的虚拟控制量、模糊隶属度函数和Lyapunov函数,设计了模糊自适应反演控制器和状态切换器。本文提出方法与其他控制方法的仿真和人类驾驶车辆的试验验证了所提出方法的有效性。  相似文献   

15.
为提高智能汽车极限工况下的自动紧急避撞能力,提出了一种联合制动与转向的综合控制方法。首先,建立了包含转向、制动和悬架子系统耦合特性的18自由度统一动力学模型,并对其进行了水平路面上的转向制动仿真。接着,提出了联合制动与转向的自动紧急避撞系统总体框架,其中路径规划选用五次多项式规划算法,纵向采用滑模跟踪控制,侧向采用基于2自由度参考模型的最优四轮转向跟踪控制。最后,参考乘用车双移线极限工况测试国际标准,构建自动紧急避撞驾驶场景,对上述模型在不同车速下的自动紧急转向避撞和联合制动与转向避撞进行了对比仿真。结果表明:当车速较高时,车辆实际轨迹与理想跟踪轨迹存在一定滞后,极限工况下仅通过转向操作难以成功避撞;而联合制动与转向的避撞控制系统可进一步提高车辆极限工况下的自动紧急避撞能力,最大通过车速可由50提高至60 km/h。  相似文献   

16.
为了提高无人驾驶车辆在直角转弯、连续弯道和弧形弯的复杂路况下路径跟踪精度、行驶稳定性与安全性,提出了一种改进的模型预测控制算法。该改进算法是根据行驶路径弯曲度确定车辆在平坦路面上不发生滑移的最大纵向速度,即车辆纵向速度不是假定恒定值。基于模型预测控制,建立车辆运动学模型,设置以速度和前轮转角为约束条件,设计以位置偏差和控制增量为目标函数,获得最优前轮转角和行驶速度。最后,借助某新能源汽车有限公司提供的无人驾驶车辆平台与测试场地,试验对比分析了在复杂路况下改进的模型预测控制算法与纵向速度恒定的模型预测控制算法时车辆路径跟踪效果,试验验证了改进模型预测控制算法的有效性与优越性,保证了车辆的路径跟踪精度、行驶平稳性与安全性。  相似文献   

17.
为解决无信号十字路口右转车辆与同侧过街行人的交互冲突问题,提出一种模拟过街行为的行人过街运动模型,设计了车辆横纵向解耦避障路径规划算法,并进行了仿真实验。使车辆面向动、静态行人时能合理切换避障路径规划策略;同时,将过街运动模型驱动下的行人作为车辆避障对象,以过街模型输出的行人未来轨迹生成车辆纵向速度规划障碍位移—时间区域,从而让行人未来运动状态反馈到车辆避障中。结果表明:本文的行人过街运动模型相对观测值的准确率达到了90%,因此,该模型复现了行人过街过程;能根据行人运动状态切换避障方案,使车辆安全避让过街行人。  相似文献   

18.
本文中根据不同工况驾驶员转向行为数据,提出了基于驾驶员避撞转向行为特征的聚类算法。首先搭建驾驶模拟器,采集了定半径转向、常规换道和紧急避撞转向工况下的驾驶行为数据,通过对比正常行驶和紧急避障工况下驾驶员转向行为数据,定性分析了紧急避撞转向特点。之后,利用皮尔逊相关系数法分析了描述驾驶员转向行为的观测变量与紧急避撞转向行为的相关性,得出转向盘转速与转向工况的相关性最高。接着,以转向盘转速作为聚类特征参数,利用改进K均值(K-means++)聚类方法对转向行为数据进行了聚类,将转向行为划分为正常转向和紧急避撞转向,实现了紧急避撞转向工况的识别。最后,通过实车试验验证了所提出的紧急避撞转向行为K-means++聚类方法可有效识别驾驶员紧急避撞转向行为,聚类精度达96.7%。  相似文献   

19.
为避免在危险出现时车辆与行人发生碰撞,提出了一种辅助驾驶员采用紧急转向的控制策略。从500例发生在日常驾驶过程的危险工况中,筛选出车辆直行与行人发生冲突的典型危险工况。利用Prescan创建开发场景。选用五次多项式规划转向避撞路径,利用前馈控制与反馈控制结合的策略,控制车辆跟踪参考路径。在Carsim和Matlab/Simulink环境下,基于二自由度车辆动力学模型进行联合仿真,以验证该策略的可行性、准确性和鲁棒性。结果表明:针对这类危险场景,该控制策略可以控制车辆跟踪避撞路径,以避免车辆与行人发生碰撞事故。  相似文献   

20.
针对智能汽车弯道避障问题,提出了一种兼顾规划曲线平滑度和车辆稳定性的轨迹规划方法。将轨迹规划分为解耦的路径规划和速度规划处理,利用改进的快速随机搜索树(RRT)构建曲率连续且曲率变化量最小的无碰撞的螺旋线路径。改进后的RRT基于深度神经网络的度量函数,选取并连接代价函数最小的树节点,并通过搜索附近节点寻找是否存在代价函数更小的节点。而在速度规划中首先根据道路限速规则,采用梯形规划输出连续的目标加速度曲线。然后基于螺旋线路径曲率和自车状态,采用预瞄加速度矢量控制(PGVC)动态调整目标加速度,最后通过加速度控制逻辑获得最终的期望加速度。仿真结果表明,所提出的轨迹规划方法不仅能使智能汽车满足弯道避撞和路径跟踪的目标要求,且提高了车辆高速过弯的稳定性能,同时本文还验证RRT的快速收敛性质、路径平滑性和基于并行计算的实时性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号