首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
轨道复合不平顺对提速列车运行影响的研究   总被引:5,自引:1,他引:4  
轨道几何形位不平顺是影响轮轨动态作用力和行车平稳性的主要因素之一,是当前高速重载和提速线路的主要研究内容.利用动力模拟仿真计算多种类型轨道单一不平顺、复合不平顺和随机不平顺激扰下提速车辆的动力响应,并着重分析轨道复合不平顺对提速列车运行安全性和平稳性的影响.对各种轨道不平顺条件下车辆动力响应的计算结果进行分析对比,找出相对不利的轨道不平顺类型及其波长和幅值,为现场控制各种类型轨道不平顺、制定提速线路轨道养护维修和不平顺管理标准提供理论依据.结果表明,方向和水平复合不平顺对车辆运行的安全性和平稳性的影响较大,是需要重点控制的轨道不平顺类型.  相似文献   

2.
轨道不平顺不仅是引起列车和轨道振动的主要激扰,也是影响列车安全平稳运行的重要因素。为分析中国高速铁路轨道不平顺谱的特性及其对列车运行的影响,采用移动单元法建立考虑离散支撑的无砟轨道-车辆耦合模型,将逆傅里叶变换得到的中国轨道不平顺谱时域样本作为轮轨激励输入,通过编程数值计算分别研究列车速度、不平顺幅值和波长对轨道-列车系统动力响应的影响。研究表明:基于移动单元法建立的无砟轨道-车辆耦合模型的计算结果与有限元模拟结果吻合良好,移动单元模型准确可靠;轨道高低不平顺的幅值和波长特性均对系统的竖向动力响应有着显著影响,随着幅值增大和较短波长成分增加,轨道位移和轮轨接触力明显增大,其中2 m左右的不平顺波会对轮轨动力特性产生显著影响;此外,较高的车速会加剧系统的竖向动力响应。  相似文献   

3.
饶南志 《铁道建筑》2015,(3):126-129
轨道不平顺是列车振动的主要激扰源,其状态直接关系到列车运行的平稳性、安全性和舒适性,也是限制列车最高运行速度的主要因素之一。本文基于轨检车现场实测数据,对我国提速线路轨道不平顺、列车振动加速度进行了统计分析及相关分析,并探讨了线路轨道不平顺对列车横向动力特性的影响。结果表明:提速线路轨道不平顺幅值服从正态分布;轨向不平顺对列车横向振动有显著影响;当列车以200 km/h的速度运行时,为了避免列车在不平顺激励下产生共振,应该对40 m波长的轨道不平顺进行控制。  相似文献   

4.
总结分析日本、法国、德国、欧洲标准委员会(CEN)以及中国高速铁路轨道不平顺管理标准,根据各国管理方式、检测方法的不同,提出一种将不同波长范围轨道不平顺管理标准转换至相近测量弦长管理值的方法,并将中国高速铁路250(不含)~350km/h速度等级的轨道高低、方向、水平、轨距和扭曲不平顺管理值与日本、法国、德国及CEN高速铁路相近速度等级、相同管理等级下的管理标准进行对比。结果表明,中国高速铁路轨道不平顺管理标准与日本新干线轨道不平顺管理标准较为接近,但明显严于法国、德国及CEN相应等级的管理标准,尤其是限速管理标准。我国高速铁路轨道不平顺管理标准的严格程度已达到甚至超过世界高速铁路发达国家,个别等级和类型的轨道不平顺管理值的经济合理性尚需进一步论证。  相似文献   

5.
轨道不平顺是轨道方面直接限制行车速度的主要因素.但不同类型的不平顺,其激扰方向、影响性质、影响程度又各不相同.通过对三种预设轨道不平顺状态的测试结果进行分析,为轨道不平顺的安全管理标准制订提供参考.  相似文献   

6.
客货共运线路轨道不平顺不利波长的分析研究   总被引:12,自引:2,他引:10  
练松良  黄俊飞 《铁道学报》2004,26(2):111-115
我国铁路主要是客货共运线路,客车的速度可达140~160km/h,而货车的速度只有80km/h左右。货车与客车的车辆结构动力性能存在较大的差异,所以对轨道结构的几何形位的要求也有所不同。为了使客车和货车都能在同一线路上安全、平稳地运行,则必须对轨道不平顺与车辆运行平稳性和安全性之间的关系进行研究。本文利用计算机动力模拟仿真计算轨道不平顺激扰下客车和货车的动力响应,对轨道随机不平顺与不同类型车辆的车体加速度之间的关系进行了相干分析和功率谱分析,计算得出了引起客车和货车较大动力响应的轨道不平顺不利波长。然后对两者的不利波长进行了分析,归纳出了客货共运线路的轨道不平顺不利波长范围,为现场轨道不平顺的养护维修和管理提供了理论和实践指导。  相似文献   

7.
轨道轨向与水平不平顺逆相位复合限值初探   总被引:1,自引:1,他引:0  
分析轨道轨向与水平逆相位复合不平顺对列车运行平稳性带来的不利影响。综合考虑轨道几何尺寸、列车运行速度和机车、车辆自身构造等因素 ,初拟轨道轨向与水平逆相位复合不平顺静态限值 ,并提出整治该病害的措施。  相似文献   

8.
介绍试验速度350 km/h预设轨道不平顺区域实车试验工况,以及现场预设轨道不平顺区域的原则。实设轨道不平顺区域包括不同幅值、波长的高低、轨向、轨距、水平、三角坑、水平和轨向逆向复合、三波连续高低、三波连续轨向、交替轨向等。阐述轨道几何、地面动力性能、车辆动力学的测试内容和方法,对轨道几何、地面动力性能、车辆动力学随速度变化进行分析,得出轮轨动力性能和车辆动力响应与轨道不平顺、速度的关系,建议加强对水平轨向逆向复合不平顺的管理,加强对连续多波高低和轨向不平顺控制。  相似文献   

9.
目的:部分轨道不平顺波对高速铁路车辆系统的振动有较大的影响,需要从轨道结构振动控制的角度,对无砟轨道不平顺敏感波长的分布特征及影响因素进行研究,以降低轨道结构振动,延长轨道结构寿命。方法:介绍了车辆-CRTSⅡ型板式轨道耦合系统的动力学算法,列出车辆-CRTSⅡ型板式轨道耦合系统的运动方程,计算得到了轨道不平顺敏感波长。在分析CRTSⅡ型板式轨道敏感波长的分布特征的基础上,选取列车运行速度、扣件、CA(水泥沥青)砂浆、路基等4种影响因素,选取各影响因素不同工况的计算参数,分析计算各影响因素不同参数取值对轨道高低不平顺敏感波长的影响。结果及结论:轨道高低不平顺敏感波长总体上随列车运行速度增大而增大,但并不是严格的单调变化;扣件各参数主要影响低阶(前5阶)敏感波长,与扣件垂向阻尼相比,扣件垂向刚度对敏感波长的影响更大;CA砂浆各参数对轨道高低不平顺敏感波长几乎无影响;路基各参数对高低不平顺敏感波长的影响与扣件相似。  相似文献   

10.
本文用车桥耦合动力学的理论,分析了短波不平顺激励下列车走行的动力响应结果,并以列车的安全性和旅客的舒适性为管理标准,提出了轨道不平顺的安全限值。  相似文献   

11.
结合朔黄铁路开行KM96型30 t轴重重载列车试验,应用车辆-轨道耦合动力学理论和SIMPACK多体动力学软件,建立30 t轴重货车车辆仿真模型,研究不同轨道几何不平顺条件下的列车动力性能以及运营安全性能。基于国内铁路开展的30 t轴重列车动力性能试验,设置高低和轨向2种类型的轨道不平顺,结合现场测试结果对仿真模型进行了验证与优化,进而分析了30 t轴重重载列车在不同不平顺波长下的动力学响应,得出了轨向、高低、三角坑等轨道不平顺指标的敏感波长。研究列车在敏感波长为10 m时,直线、曲线上单项以及逆向复合不平顺条件下的动力学响应,结合30 t轴重列车运行安全性能指标的变化趋势,提出了30 t轴重条件下重载铁路轨道几何不平顺的限速管理值,其中高低26 mm,轨向22 mm,水平26 mm,三角坑18 mm,逆向复合不平顺19 mm。  相似文献   

12.
横风对高速列车运行安全性影响十分显著,轨道不平顺影响着列车轨道相互作用关系。目前已有研究尚未充分考虑到中国高速铁路无砟轨道线路状态的变化与横风作用下高速列车安全性问题的影响。为了研究这两者的变化耦合而造成的列车安全性影响,采用计算流体力学软件和有限元软件联合仿真,建立横风-高速列车-轨道耦合动力分析模型,输入5种典型的高速铁路无砟轨道不平顺百分数谱,计算分析不同列车运行速度和风速条件下列车运行的安全性指标。结果表明,对应于25%百分位数谱,列车脱轨系数和轮重减载率最低,接下来依次是50%百分位数谱、平均谱、70%百分位数谱和90%百分位数谱。其中在列车运行速度为300 km/h下,横风速度为25 m/s时,70%百分位数谱和90%百分位数谱对应的安全性系数超出安全限值,列车可能发生脱轨。因此在设计和检算强横风作用下高速列车运行安全性指标时,宜采用中国高速铁路无砟轨道70%百分位数谱和90%百分位数谱。  相似文献   

13.
目的:为了对列车运行的平稳性、安全性、舒适性以及环境振动噪声进行更好的控制,亟需展开针对成都地铁线路进行轨道不平顺谱的分析研究。方法:采用轨检车对成都地铁7号线轨道弹性变形和永久变形的叠加状态进行动态检测,测试项目主要包括左右轨的高低不平顺、轨向不平顺、水平不平顺及轨距不平顺等。然后采用目前最常用的功率谱密度估计方法——Welch法(改进的周期图法)进行功率谱密度计算,得到统计期内被测轨道的长波高低不平顺谱、轨向不平顺谱、轨距不平顺谱及水平不平顺谱,并对计算结果进行分析,总结出成都地铁7号线轨道不平顺谱的频率特性,并与国内外典型轨道谱进行对比。基于非线性最小二乘法,采用中国三大干线谱公式对成都地铁7号线轨道谱进行曲线拟合。结果及结论:轨道板板缝会影响轨道的长波不平顺;成都地铁7号线轨道不平顺谱均存在空间频率为0.04 m-1整数倍的窄带谱峰,该空间频率与无缝钢轨相邻2个焊缝间的线路长度吻合,焊缝不平顺已经成为了严重影响轨道状态以及列车运行的问题;成都地铁7号线轨道的平顺性优于美国、德国以及我国的普速铁路(尤其是波长大于19 m的长波频段),但不如我国的高速铁路无砟...  相似文献   

14.
轨道几何不平顺不仅是列车动力响应的主要原因,也是列车运行安全性和平稳性的重要因素。基于SIMPACK多体动力学仿真软件,分析4种基本随机不平顺对高速列车直线运行性能和曲线运行性能的影响,对比不同激励类型下列车的安全性和平稳性指标,并推导出最不利影响激励和线路位置,为现场控制基本轨道不平顺,制定轨道养护维修和不平顺管理标准提供理论依据。分析结果表明:方向和高低随机不平顺分别对列车的横向加速度以及垂向加速度影响较大,轨距随机不平顺对曲线地段列车脱轨系数作用最大,方向随机不平顺对列车在直线和第二段缓和曲线处脱轨系数影响较大,同时在两段缓和曲线处轮重减载率也急剧增大,水平随机不平顺对两个缓和曲线地段处列车的脱轨系数影响较大。  相似文献   

15.
基于车辆-轨道耦合动力学理论,结合我国高速铁路轨道不平顺的管理模式,提出利用高速铁路轨道不平顺谱进行不同管理等级轨道不平顺限值估算的方法。以中国高速铁路无砟轨道不平顺谱激扰作用下中国典型高速车辆在板式无砟轨道上运行为例,进行350km/h行车速度条件下轨道高低、轨向、水平、轨距不平顺各管理等级(Ⅰ~Ⅳ级)对应限值的估算,并与传统单一谐波(波长为10、40m)激扰作用下计算获得的限值和国内外高速铁路轨道不平顺标准对比分析。结果表明,采用本文所提的限值估算方法,以包含多种波长成分的随机不平顺作为输入激扰,相比单一谐波的计算方式考虑更为全面,可反映轨道不平顺各波长成分对行车品质的共同作用;相比国内外高速铁路轨道不平顺标准,在本文仿真计算条件下,利用高速铁路轨道不平顺谱估算的各管理等级轨道不平顺限值总体居于国内外标准之间。因此,本文利用高速铁路轨道不平顺谱进行轨道不平顺限值估算的方法是可行的,为采用动力学仿真手段获取轨道不平顺理论限值提供了一种新途径。  相似文献   

16.
研究目的:随着社会经济发展和人们需求的提高,铁路货运能力亟待进一步提高,在既有铁路网基础上加大铁路列车轴重是有效提高铁路运能的主要途径之一。列车轴重增大后车桥振动效应将增加,既有铁路网中的钢桥能否适应铁路轴重的提高成为列车轴重能否增加的关键问题。本文为分析重载列车作用下钢桥动力性能,选取既有线中常用跨度48 m钢桁梁桥为研究对象,通过轮对与轨道接触处的力与位移相互关系建立空间重载铁路车-桥系统耦合振动分析模型,在与实测结果对比基础上,对影响重载铁路钢桁梁桥动力性能的轨道不平顺、列车轴重和列车速度等因素进行系统分析。研究结论:(1)轨道不平顺功率谱、列车轴重和列车速度均对重载列车作用下的钢桁梁桥的动力性能有着重要影响;(2)美国六级轨道不平顺与桥上实际线路不平顺更加接近;(3)重载铁路运输中27 t轴重列车通过48 m钢桁梁桥时建议对列车运行速度进行限制。  相似文献   

17.
160Km/h线路轨道不平顺管理标准的研究   总被引:6,自引:0,他引:6  
本文建立了车辆动力分析的空间耦合振动模型,并对模型进行了动力学仿真,分析了轨道高低、轨向和水平不平顺对准高速行车的影响,进而从安全和乘车舒适角提出了准高速线路轨道不平顺管理的建议值。  相似文献   

18.
中高速条件下车线桥动力分析模型与轨道不平顺影响   总被引:3,自引:2,他引:1  
提高旅客列车运行速度,开发客运高速技术,是作为我国国民经济发展的重要基础设施的铁路系统,为满足国民经济持续、快速、健康发展的战略需要而必需面对和解决的技术问题.这一技术问题的解决涉及到机车车辆、通信信号、运输组织、铁道建筑等诸多方面,是一庞大而复杂的系统工程.在这一系统工程中,铁道线路作为快速和高速列车走行基础,其线、桥、隧的质量状态直接影响着标志着铁路技术水平的行车速度提高和列车运行品质的好坏(如平稳舒适性、脱轨安全性).因此,在开发客运提速和高速配套技术时,为保障行车安全,提高轨道和机车车辆部件的使用寿命,改善列车运行的平稳舒适性,需要深入研究轨道不平顺对列车运行品质的影响,提出轨道不平顺的有效控制办法.  相似文献   

19.
对北京大兴国际机场线开展动态综合测试发现,列车运行至高架部分区段出现异常晃动现象,列车运行平稳性指标超过标准限值。通过分析确定轨道高低不平顺异常是导致列车运行平稳性异常的原因;针对性地对该区间轨道进行精调整治后,列车运行平稳性复测结果满足标准要求。本文阐述了列车运行平稳性异常问题发现、分析、整治、复测的过程,同时验证了地铁新线初期运营前开展动态综合测试的有效性。  相似文献   

20.
高速行车条件下轨道几何不平顺敏感波长研究   总被引:1,自引:0,他引:1  
应用车辆-轨道耦合动力学理论及分析软件TTISIM,研究轨道几何不平顺波长变化对高速车辆系统动力响应影响,探讨高速行车条件下轨道几何不平顺敏感波长问题。结果表明:在250~400km/h行车速度域,高速列车系统动力响应指标随轨道不平顺波长变化存在一个幅值相对较大区间;轨道不平顺类型和行车速度不同,敏感区间对应轨道不平顺波长范围亦不相同。综合对比发现:在250~400km/h行车速度域,轨道高低、方向和水平不平顺在长波段敏感波长范围分别约为80~160m、40~120m和50~160m;在相同行车速度条件下,轨道扭曲不平顺在长波段敏感波长范围约为40~100m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号