首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着旅客列车运行速度的提升,安装在车厢连接处的U型橡胶外风挡结构在列车空气动力作用下产生变形振动,当气动载荷的激励频率接近外风挡结构固有频率时易引起共振现象。为分析U型橡胶外风挡结构固有动态特性,利用模态有限元计算和试验相结合的方法,比较有限元模态计算中2种材料本构模型的区别,并研究模态试验激励点与响应点位置对U型橡胶外风挡结构模态参数的影响。研究结果表明:有限元模态分析时,网格单元层数过少导致计算结果刚度偏大;采用Mooney-Rivlin本构模型计算橡胶材料模态参数相对于线弹性更为合适;有限元模态分析所得结构振型可为模态试验响应点位置的选择提供指导。研究成果可为高速列车U型橡胶外风挡结构设计提供参考。  相似文献   

2.
针对高速列车车体弹性振动影响悬挂部件的安全性及乘坐舒适性问题,建立考虑车体弹性的高速列车垂向刚柔耦合动力学模型,车体视为两端自由均质等截面欧拉-伯努利梁,在频域内研究弹性效应下的振动特性及其传递关系。分析结果表明,在特定轨道不平顺波长激励下,车体对称模态响应为零,而反对称模态响应最大;反对称模态响应为零,而对称模态响应最大。当车体固有频率与激励频率一致时,车体会产生共振。一阶垂弯共振速度与共振波长对列车运营有重要影响,一阶垂弯模态频率处车体相关频响函数加速度传递率最大,对车体振动贡献最大,速度越高,对一阶垂弯频率要求越高。提高车体结构阻尼和一系垂向阻尼、适当降低二系垂向阻尼可提高车体垂向运行平稳性。  相似文献   

3.
车端连接处的风挡是影响高速列车气动特性的关键部件。基于雷诺时均法的k-ε方程,建立3节编组的CRH380B型高速列车的稳态流场计算模型,通过风洞试验验证计算模型的准确性,并研究不同形式的风挡结构对高速列车气动特性的影响。研究表明,与其他形式的风挡相比,采用闭合式半风挡的列车在梳理流场迹线和气流方向等方面效果显著,建议在中间车厢连接处采用闭合式半风挡;全封闭外风挡能够有效地控制流场速度分布和减小端面正负压力,建议在车头与后端车厢连接处以及车尾与前端车厢连接处采用全封闭外风挡。  相似文献   

4.
针对高速列车运行速度较快而导致车端连接处的U形外风挡易遭受气动载荷冲击产生振动以及在气动载荷作用下产生大变形等问题,文章基于拓扑优化对外风挡结构动态柔度进行优化设计,在满足一定约束的前提下,在设计域内寻找指定实体材料的0-1分布,并对中间密度使用惩罚因子进行忽略,使得目标函数外风挡结构柔度最小化。并将动态柔度优化模型的求解策略做进一步研究,采用移动渐进法(MMA)对于优化问题数学模型进行求解分析。研究结果表明,优化后的外风挡断面面积减少,抵抗变形能力和一阶固有频率提高。  相似文献   

5.
通过三维大涡模拟(LES)数值计算方法,对横风中不同行使工况下高速列车的非定常空气动力特性进行研究。计算得到各工况下高速列车车体所受非定常空气动力的时域特性、频域特性、脉动特性,以及列车周围非定常流动结构。分析结果表明,横风中高速列车所受空气动力存在明显的非定常性。从各工况高速列车所受空气动力脉动的均方根值来看,各节车的非定常现象基本随着合成风向角的增加而增大。在高速列车所受非定常空气动力的频域特性方面,其峰值频率集中在斯托劳哈尔数0.05~0.2范围内,这一范围对应实车情况的频率为0.5 Hz~2 Hz,这与高速列车系统本身存在的一些固有振动频率接近,存在由横风引起高速列车系统共振、降低高速列车行驶安全性乃至引发高速列车脱轨倾覆的可能性。  相似文献   

6.
为改善高速列车空气动力学性能,减小列车阻力,采用风洞试验方法针对高速列车转向架区域、车端连接区域及车底排障器导流罩区域进行优化设计与方案对比,得出如下结论:转向架区域的空间越小,减阻效果越好,若增加底部导流板可减阻3.4%,增加外风挡可减阻1.9%;排障器导流罩距轨面高度越小、后端距离转向架空腔越近,减阻效果越好,可减阻2.1%。此研究结果可为高速列车气动结构优化设计提供依据,具有重要的现实意义。  相似文献   

7.
高速列车车间悬挂对运行平稳性影响的研究   总被引:3,自引:1,他引:2  
以列车为研究对象,采用面向对象的建模技术,建立了带车端悬挂系统的5辆车编组、3辆车编组以及单车的垂向及横向非线性动力学模型,对高速列车的运行平稳性进行研究。对单车和3辆车编组的列车模型的频域分析表明车辆间加入车端悬挂系统增加了车辆间的耦合,能有效地提高列车高速运行时的平稳性。运用5辆车编组的列车动力学模型,采用时域仿真的方法,对车端悬挂参数进行了研究。研究表明车端的横向及垂向刚度和阻尼分别对列车的垂向和横向运行平稳性影响较大,车端的纵向能同时起到抑制车辆点头和摇头振动的作用,但需要设置较大的数值。  相似文献   

8.
横风下高速列车非定常空气动力特性研究   总被引:5,自引:3,他引:2  
通过大涡模拟(LES)数值计算方法,对均匀定常横风下高速列车的非定常空气动力特性进行了研究。计算得到横风下列车车体所受空气动力的时域及频域特性、列车周围非定常流动结构及相应非定常流场特性。对计算结果分析表明,即使在均匀定常横风下,列车所受空气动力也存在明显的非定常性。对于所研究车型,这种非定常空气动力的特征频率出现在11 Hz以下,并且主要峰值集中在0~3 Hz区间,这与列车系统本身的固有振动模态频率接近,存在横风引起列车系统共振,进而发生列车倾覆的可能;同时研究表明,横风下列车周围流场非定常特性与列车所受非定常空气动力特性在频域中存在对应关系,可以通过测量非定常流场确定列车非定常空气动力特性。  相似文献   

9.
提高列车的运行平稳性是机车车辆动力学的研究热点。本文以列车的横向运行平稳性为研究对象,采用面向对象的建模方法,建立了由3节车辆组成的车组横向动力学模型,并将作动器放置在车端构成车端主动悬挂系统。采用轨道不平顺高速谱作为输入,考虑轮轴间时延,运用遗传算法对控制器进行优化设计。研究表明,采用车端主动悬挂系统,运用本文算法,车组的横向运行平稳性得到了提高;当在端部车辆的端部二系悬挂中再并行设置作动器,并采用改进的天棚阻尼器算法后,端部车体的振动得到了有效抑制,整个列车横向运行平稳性进一步得到了改善。  相似文献   

10.
为探明空气动力作用下,高速列车外风挡与车体外表面安装间距对风挡气动特性的影响规律,采用三维、定常、不可压缩雷诺时均R-S方程和RNG k-ε双方程湍流模型数值算法,对0,10,20和30 mm不同安装间距的三车编组半包式外风挡高速动车组进行数值模拟,列车明线运行速度等级为350 km/h。研究结果表明:安装间距对于风挡受侧向力影响较大,尤其是橡胶弧顶与来流相对的外风挡所受侧向力与安装间距成二次函数关系,安装间距30 mm的外风挡受侧向力最大为785N;安装间距对外风挡所受阻力、升力的影响较小,橡胶弧顶相对的两块外风挡阻力方向相反,外风挡气动升力均为负升力且最大为62N;安装间距导致外风挡表面压力分布呈现规律性变化,将外风挡表面气动压力映射到有限元计算模型上,分析不同安装间距下气动载荷作用对外风挡结构变形与应力的影响。本文研究结果可对外风挡结构强度与优化设计,以及安装位置精度要求提供指导。  相似文献   

11.
机车处于轮轨黏着极限状态运行时,轮轨黏着饱和及负斜率特性使得驱动轮对出现复杂的动力学现象。为了研究机车驱动装置受到轮轨动态激励的响应,首先研究黏着极限状态轮轨的黏滑特点及其引起轮对的动力学问题,然后建立机车的多体动力学模型,仿真驱动装置各结构部件的振动及其振动主频率,得出避免机车驱动装置结构发生共振的参数匹配原则。结果表明:机车处于黏着极限状态运行时,轮轨间黏滑状态会产生驱动轮对的纵向振动和驱动装置的自激振动等典型动态特征;驱动装置自激振动会激发基于结构固有频率的振动,且各结构振动会相互影响。因此,需合理选取牵引电机吊挂关节的刚度,避免基于电机点头振动固有频率及各结构部件固有频率的振动。特别是,若牵引电机转子旋转、轮对扭转振动和轮对纵向振动的固有频率一致,将引起驱动装置结构产生共振。  相似文献   

12.
列车高速通过站台时的流固耦合振动研究   总被引:2,自引:0,他引:2  
采用计算流体动力学(CFD)和多体动力学相结合的方法研究列车高速通过站台时的风致振动及安全问题。应用有限体积法和滑移网格模拟计算方法,通过求解三维瞬态可压缩N—S方程获取列车通过站台的气动力。运用Simpack软件建立3辆编组的动车组动力学模型,轨道不平顺条件选用美国六级谱,并将用CFD得到的气动力作为激励输入动车组动力学模型,对列车高速通过站台时的气动行为进行仿真计算,得到列车高速通过站台时的振动时程曲线。计算结果表明,列车高速通过站台时,在气动力作用下3辆车均不同程度向站台靠近,且尾车的尾部向站台靠近的距离最大,达到19mm;头车向站台靠近主要是由车体的摇头运动所致,中间车向站台靠近是由车体的横向摆动所致,而尾车向站台靠拢则是由车体的横摆运动和摇头运动共同作用所致。  相似文献   

13.
综合检测列车是一种综合检测高速铁路质量达标的高速列车。在时速350 km中国标准动车组基础上,研发高速综合检测试验列车,配套先进的高速综合检测试验设备,同时研发代表新技术发展趋势的高速动车组关键系统平台,开展高速动车组新技术工程化应用及试验,进一步提升我国铁路安全综合检测技术水平和动车组技术水平。介绍了高速综合检测试验列车研发的背景、总体目标、总体技术方案和关键技术。  相似文献   

14.
从运营安全性和振动特性两个方面,详细分析高速动车组的动力学问题。分析结果表明,通过轮轨关系匹配、轮对定位刚度和阻尼的优化、悬挂参数设计等,高速动车组不仅可以在运动稳定性、脱轨安全性以及结构安全可靠性方面具备持续高速运行的充足安全性,而且在运行平稳性、乘坐舒适度方面能够达到优秀的等级。在此基础上还有针对性地提出优化和提升高速列车动力学性能的对策。  相似文献   

15.
为探究高速列车齿轮系统的固有特性和动力响应情况,通过建立齿轮系统三维实体模型和有限元模型,基于振动理论、Hertz接触理论以及有限单元法,对系统进行静力学分析、模态分析和动力学分析。研究在最大启动扭矩作用下齿轮系统应力分布情况,对齿轮系统静强度进行校核;通过模态分析识别齿轮系统模态参数,研究系统共振失效可能性;齿轮啮合过程具有明显周期性,通过瞬态动力学分析确定齿轮啮合周期内,系统在额定转速工况下的动力学响应情况。结果表明:静力学分析表明齿轮系统静强度在安全范围内,模态分析表明系统不会产生共振,瞬态分析表明在输入恒定的前提下,由于齿轮啮合产生了刚度激励、误差激励等内部激励,使系统输出出现周期性波动,对系统稳定性产生影响。  相似文献   

16.
针对我国部分地铁线路出现振动噪声加剧及钢轨异常波磨的现实情况,研究减振轨道钢轨波磨产生原因。利用仿真软件Simpack建立包含地铁车辆和轨道结构的车辆系统动力学模型,分析车辆通过速度与轨道结构振动频率的关系以及弹性轨道结构共振特性,得到梯形轨枕轨道钢轨波磨可能形成原因。研究结果表明:在振动频率230 Hz(R1 200 m)、225 Hz(R2 000 m)以及211 Hz(R3 000 m)处,内侧钢轨与梯形轨枕出现更为明显的共振现象,仿真计算波磨波长和现场实测数据接近;对比相同曲线半径下的普通轨道和梯形轨枕轨道振动频率的分布情况,得出钢轨波磨与轨道结构固有振动特性有关。轨道结构固有振动特性及车辆曲线通过速度是造成钢轨波磨形成的关键因素。  相似文献   

17.
为研究车轮滚动及轨道板激励与车辆固有频率匹配关系,首先对某动车车体进行静态台架模态试验,识别车体固有模态参数;然后在某线路上测试车体振动加速度,识别车体在各互功率谱峰值处ODS变形。通过理论计算车轮滚动频率与某高阶变形频率接近,该频率下车体变形为车轮滚动激励所导致;在速度250km/h,轨道板激励频率与车体1阶垂弯频率接近,车体1阶垂弯变形被轨道板激励频率激发,车体能量较大,垂弯振动较为剧烈,车体中部和转向架上方地板振动较大。轨道板激励导致车体强迫共振。  相似文献   

18.
基于高速列车-桥梁时变系统空间振动分析模型,采用弹性系统动力学总势能不变值原理及形成系统矩阵的“对号入座”法则,建立此系统空间振动方程。运用列车脱轨能量随机分析理论,对天兴洲公铁分建40 m简支梁桥客运线上高速列车在设计车速以内是否脱轨及在不脱轨条件下高速列车走行舒适性进行分析。研究结果表明:该桥上高速列车在300km/h车速以内运行时不会脱轨;高速列车走行舒适性均在良好标准以上;该桥竖向振动加速度满足要求。  相似文献   

19.
轨道不平顺是高速列车振动的主要激励源,其激起的列车系统振动具有典型的随机振动行为,其对列车运行的安全性、平顺性具有重要影响。针对此问题,利用虚拟激励法为核心算法的SiPESC-HiPEM计算百万自由度复杂三维车体弹性体的随机振动响应,并根据振动响应结果及疲劳累积损伤理论计算车体的疲劳寿命,其高效、精确的特点为高速列车动力学设计、性能预测提供了有效手段。  相似文献   

20.
运用ANSYS有限元软件及SIMPACK动力学软件联合建立高速动车组刚柔耦合动力学模型,选取客运专线高速区段典型的钢轨波磨(波长120~150 mm,波深0. 02~0. 06 mm),在充分考虑柔性轮对共振模态的基础上,研究钢轨波磨对车辆动力学性能的影响。研究结果表明:轮轨垂向力、轴箱振动加速度级与构架振动加速度级均随着波深的增大而增大,随着速度的增大基本呈增大趋势,与波长呈反比关系。但个别速度及波长下由于通过频率与固有频率存在共振,会影响上述变化规律;通过频率为550~600 Hz时,一系弹簧与减振器对轴箱振动的隔振效果较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号