首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了选取适用于反复荷载作用下钢筋与灌浆料之间黏结滑移的实现方式,同时为了解决半灌浆套筒连接件在反复荷载作用下伸长位移较大及钢筋拔出的问题,提出了在灌浆锚固端增加锚固板的优化方式。采用ABAQUS软件,设置不同钢筋直径,采取单调拉伸及反复拉压两种加载制度进行加载,进行有限元模拟分析。结果表明,反复荷载制度下连接件的极限荷载降低了约5.5%;反复荷载使得连接件在线弹性阶段产生的位移增加了130%左右,且随钢筋直径增大而增大;增加锚固板的优化方案避免了钢筋拔出破坏,使得连接件极限荷载得以提升;增加锚固板使得反复荷载下每轮循环产生的位移较为均匀,且有效减少了位移总量;反复拉压较单调拉伸情况下,灌浆料损伤增加26%,优化后的连接件的灌浆料损伤略有降低。  相似文献   

2.
张靖皋长江大桥南航道桥锚碇基础地下连续墙刚性接头钢筋采用了锚固板构造,在带肋双孔锚固板构造基础上,提出了一种简化的双孔锚固钢板,为了研究带肋双孔锚固板、双孔锚固钢板、单孔锚固板在混凝土中的锚固性能,以及双孔锚固钢板厚度的影响,共进行了6组钢筋锚固板拉拔试验,分析了不同锚固板拉拔试件的破坏模型、极限承载力、钢筋拉拔应力~加载端位移曲线、锚固段钢筋黏结应力与锚固板承压力间的分配。结果表明:所有拉拔试件基本都发生沿混凝土剪切裂缝造成的劈裂破坏,带肋双孔锚固板、双孔锚固钢板两种双孔锚固板类型的锚固性能相差不大,双孔锚固钢板的锚固性能受锚固板厚度的影响较小,其主要受锚固板承压面尺寸的影响。  相似文献   

3.
预应力锚索灌浆体与周围岩土体结合面的极限黏结强度是预应力锚索设计优化的基础参数,然而该参数的取值目前还严重依赖于经验,尤其对于锚固段穿越双地层的工况。此外,预应力锚索现场拉拔试验只是被用来验证初步设计方案是否满足极限承载力要求,并未与设计方案优化建立定量联系。基于对拉力型预应力锚索工作状态作出的合理化假设,建立了适用于锚固段穿越双地层的拉力型预应力锚索拉拔传力机理力学模型,即弹簧-粘片力学模型。该模型给出了锚索锚固段剪应力状态处于不同阶段时的锚固段剪应力分布函数、拉拔力上下限以及拉拔力-始端位移理论关系式。通过将弹簧-粘片力学模型与现场拉拔试验相结合,提出了一种适用于锚固段穿越双地层的预应力锚索极限黏结强度的半解析预测方法。通过与实际工程中的预应力锚索现场拉拔试验成果及三维有限差分数值分析的对比,验证了该预测方法的有效性及其在预应力锚索设计优化中的应用性。研究结果表明:采用所提出的半解析预测方法确定锚固段穿越双地层的预应力锚索极限黏结强度时,只需开展一组现场拉拔试验,从而克服了仅依靠现场拉拔试验获取双地层中极限黏结强度时需开展至少2组现场拉拔试验的缺点,可大幅节约工程造价且有效缩短了工期,具有较好的工程应用前景。  相似文献   

4.
在绿色低碳发展理念的倡导下,桥梁预制拼装技术在城市桥梁建设中的应用越来越广泛。依托上海两港大道预制拼装桥梁实际工程,其预制立柱钢筋与盖梁采用灌浆波纹钢管锚固连接。为验证贴边埋置灌浆波纹钢管锚固连接能提供可靠的黏结锚固能力,考虑不同钢筋锚固长度、灌浆与压浆工艺等因素,开展灌浆波纹钢管-钢筋黏结滑移力学行为的拉拔试验研究,研究损伤发展过程、破坏模式、力与位移曲线等力学行为,并进行归纳总结,为实际工程的应用提供技术支撑。  相似文献   

5.
刘志权  胡可  石雪飞  殷晨昂 《公路》2021,(3):153-157
通过数值分析方法,对预制混凝土桥面板回转式钢筋接缝受拉性能进行参数化研究。分析了横向钢筋、回转式钢筋间距、回转式钢筋重合长度及混凝土强度等参数对回转式钢筋接缝极限承载能力的影响,探讨了回转式钢筋接缝在轴向受拉荷载下的受力性能及破坏机理。研究结果表明:在轴向受拉荷载作用下,接缝承载力随回转式钢筋间距增加而降低,随重合长度及混凝土强度增加而提高;此外,增加横向钢筋可以提高接缝承载能力,在横向钢筋面积较小时影响明显,当横向钢筋增加到一定数量后其影响逐渐减小。  相似文献   

6.
预应力钢绞线与玄武岩纤维活性粉末混凝土BFRPC(Basalt Fiber Reactive Powder Concrete)之间的黏结性能,对预应力BFRPC桥梁结构的抗弯承载力、裂缝控制、刚度等性能具有显著影响。为了明晰预应力钢绞线与BFRPC之间的黏结-滑移失效过程,通过中心拉拔试验研究了钢绞线直径和黏结长度对预应力钢绞线与BFRPC之间黏结性能的影响。深入探讨了黏结应力-滑移曲线特征、黏结强度及影响因素;建立了BFRPC与预应力钢绞线的分段式双线型线性黏结应力-滑移本构关系模型;综合考虑钢绞线螺旋缠绕特征与旋转滑移失效模式,修正了预应力钢绞线与BFRPC的极限黏结强度计算模型。研究结果表明:对于相同直径的预应力钢绞线,黏结长度每增加100 mm,初始黏结应力下降15%~18%,极限黏结应力下降20%~23%;泊松效应会削弱混凝土和钢绞线之间的握裹力,使得黏结强度与钢绞线直径成反比;钢绞线与BFRPC的黏结-滑移本构关系模型可有效区分拉拔损伤的线性段和滑移段;建立的极限黏结强度修正模型精度良好,误差控制在理论计算控制线两侧±8%以内。  相似文献   

7.
相比现浇混凝土桥面板,全预制混凝土桥面板有诸多优势,能够提高桥梁工程质量、加快桥梁施工速度和降低成本。预制超高性能混凝土(Ultra-high Performance Concrete,UHPC)梁和预制UHPC桥面板通过槽口连接形成组合梁是一种新的结构形式,这种槽口式连接的界面抗剪性能会影响全梁整体承载力。通过16个推出试件,研究不同界面抗剪钢筋配筋率、预制梁混凝土类型和预制桥面板混凝土类型、槽口填充混凝土类型对界面抗剪承载力的影响,在试验过程中观测裂缝的发展和破坏模式,记录竖向滑移、水平滑移和试件破坏模式、钢筋应变、极限荷载Vu和残余荷载Vr。试验结果表明:界面抗剪钢筋配筋率对Vu和Vr起主要作用,配筋率为3.7%的界面极限荷载分别是配筋率为2.8%和2.0%的1.06倍、1.20倍;不同的槽内填充混凝土和预制梁混凝土二者共同影响Vu和Vr;预制桥面板混凝土类型对抗剪性能影响不大;钢筋的销栓作用主要受到钢筋直径和混凝土强度等级的影响;通过与AASHTO LRFD 2015和ACI 318规范对比发现,2个规范对UHPC组合梁槽口式连接界面抗剪承载力估计保守;提出的预制UHPC组合梁槽口式连接界面抗剪计算公式计算值与试验值吻合较好。  相似文献   

8.
基于无厚度接触面单元与三维轴对称问题基本假设,以珠三角地区岩土锚固工程常见的中风化泥质粉砂岩与残积粉质粘土为研究对象,对不同设计参数扩大头锚杆受力特性与极限抗拔力进行数值模拟,以分析研究不同介质扩孔锚的承载性状。研究结果表明,扩孔锚扩大头直径与锚固介质强度是影响扩孔锚承载力的主要因素,扩大头长度对扩孔锚承载力的影响不明显,研究结论与模型实验结果相吻合。基于相关研究提出了若干对扩孔锚设计与施工有实际参考价值的建议。  相似文献   

9.
装配式结构凭借其施工质量有保障、生产效率高的优点发展迅速,但由于接头处受力的不连续性和不确定性,使得接头成为结构的薄弱环节。为了确保装配式结构安全推广和应用,采用模型试验和数值模拟相结合的方法,对混凝土梁钢套筒锚接接头的抗弯性能和破坏模式进行研究。结果表明: 1)接头的受力过程分为线弹性、梁身混凝土开裂、钢筋与锚固胶滑移破坏等几个阶段; 2)接头最终的破坏形式是锚接钢筋与锚固胶之间的滑移破坏,结构破坏时钢筋应力接近其屈服强度,表明接头可以提供足够的锚固力; 3)可以采用黏聚力模型模拟钢套筒锚固接头抗弯受力过程,通过调整接头钢筋根数和直径可以满足不同截面大小的结构受力要求,可为该接头在装配式地下连续墙中的应用提供可能。  相似文献   

10.
为了解决桥墩与承台的装配式连接问题,提出金属波纹管和超高性能灌浆料的预制拼装桥墩方案。首先考虑施工方式和加载方向参数的影响,以某地铁高架桥为工程原型设计4个试件,然后采用水平单向和双向拟静力试验方法,对比分析金属波纹管节段拼装桥墩和整体现浇桥墩抗震性能的差异,最后探讨双向压弯作用下的极限承载能力验算方法。试验结果表明:灌浆波纹管试件塑性铰区纵筋出现拉断而不是纵筋拔出,说明灌浆波纹管的钢筋连接方式可靠;灌浆波纹管连接节段拼装桥墩损伤过程、破坏模式与整体现浇桥墩总体上接近,主要抗震性能指标的差异较小,认为抗震性能与整体现浇试件的抗震性能接近,表明灌浆波纹管连接是一种可行的装配式桥墩与承台的连接方式;相对于单向加载试件,双向加载的钢筋混凝土试件RC,最大水平力下降11%,极限位移下降18%,双向加载的预制拼装试件最大水平力降低11%,极限水平位移降低15%,残余位移增大了20%,试件损伤程度更为严重,说明在水平双向荷载受力下,整体现浇试件和节段拼装试件有着明显的双向荷载耦合效应;双向压弯作用下截面的弯矩计算方法能够较准确地校核节段拼装墩的极限承载能力。研究成果可为节段拼装桥墩的抗震设计和抗震分析提供参考。  相似文献   

11.
为研究玻璃纤维增强复合材料筋(glass fiber reinforced polymer bars, GFRP筋)与混凝土的黏结性能及破坏模式,进行了9组GFRP筋与混凝土的单向拉拔试验。试验设计中考虑了GFRP筋锚固长度、GFRP筋直径及混凝土强度的变化对GFRP筋锚固性能的影响。试验结果表明:GFRP筋与混凝土间的黏结强度随筋材锚固长度及混凝土强度的增加而显著提高;对于筋材直径为12mm的试件,其峰值荷载由锚固长度30 mm对应的24. 4 kN增加至锚固长度120 mm对应的71. 5 kN;对于相同几何构造特征的试件(S-4,S-8及S-9),其峰值荷载由C30对应的55. 4 kN增加至C50对应的71. 5 kN;此外,试件的破坏模式随筋材直径及锚固长度的增加由筋材受拉断裂转变为筋材拔出破坏或混凝土劈裂破坏;试验所得的试件荷载-滑移曲线表现出典型的4阶段受力破坏特征,分别为微滑移段、滑移段、下降段和残余段。研究成果可为GFRP筋在混凝土结构中的应用提供参考。  相似文献   

12.
为研究玻璃纤维增强复合材料筋(glass fiber reinforced polymer bars, GFRP 筋)与混凝土的黏结性能及破坏模式,进行了9 组 GFRP 筋与混凝土的单向拉拔试验。试验设计中考虑了GFRP 筋锚固长度、GFRP 筋直径及混凝土强度的变化对GFRP 筋锚固性能的影响。试验结果表明: GFRP 筋与混凝土间的黏结强度随筋材锚固长度及混凝土强度的增加而显著提高;对于筋材直径为12 mm 的试件,其峰值荷载由锚固长度30 mm 对应的24. 4 kN 增加至锚固长度120 mm 对应的71. 5 kN;对于相同几何构造特征的试件 (S-4, S-8 及S-9),其峰值荷载由C30 对应的55. 4 kN 增加至C50 对应的71. 5 kN;此外,试件的破坏模式随筋材直径及锚固长度的增加由筋材受拉断裂转变为筋材拔出破坏或混凝土劈裂破坏;试验所得的试件荷载-滑移曲线表现出典型的4 阶段受力破坏特征,分别为微滑移段、滑移段、下降段和残余段。研究成果可为GFRP 筋在混凝土结构中的应用提供参考。  相似文献   

13.
为提高开孔板连接件(PBL)的抗剪性能,提出了带柔性套筒的复合型PBL连接件,并对其抗剪性能进行试验研究,建立复合型PBL承载力计算方法。基于贯穿钢筋弯拉受力模型,推导其抗剪作用表达式,得到PBL孔内应力扩散角对贯穿钢筋抗剪作用的影响规律。设计制作8个PBL推出试件并进行破坏试验,探究柔性套筒壁厚对复合型PBL抗剪刚度、承载能力、延性、破坏模式及孔内钢筋混凝土榫传力机制的影响。研究结果表明:极限状态下,复合型PBL的贯穿钢筋弯拉变形较大,荷载-滑移曲线呈现明显的强化特征,且连接件延性得到显著改善;与无柔性套筒的常规PBL比较,贯穿钢筋周围包裹2 mm壁厚套筒的复合型PBL极限承载力和相应滑移分别提高了40.0%和42.6%;继续增大柔性套筒壁厚,由于孔内混凝土榫的有效剪切面积削弱,且两侧混凝土对贯穿钢筋的局部支撑作用减小,连接件承载力有所降低,但延性得到持续改善。将试验结果与已有常规PBL承载力计算公式进行对比分析表明,以钢筋混凝土榫剪切变形为主的常规PBL承载力计算公式对复合型PBL抗剪承载力计算误差较大,相关公式计算值均小于试验实测值。结合复合型PBL传力机理,给出了考虑混凝土榫剪切作用、贯穿钢筋作用和混凝土板局部支撑作用的PBL承载力计算公式。与试验结果对比发现,所提承载力公式计算值与试验结果吻合良好,可用于复合型PBL抗剪承载力的确定。  相似文献   

14.
为研究螺旋肋GFRP筋与UHPC黏结强度,以钢纤维掺量、保护层厚度、锚固长度及GFRP筋直径为试验参数,对60个螺旋肋GFRP筋与UHPC试件展开拉拔试验,获得了各参数对GFRP筋与UHPC黏结强度的影响规律。结果表明:GFRP筋UHPC试件的拔出破坏主要呈现直接拔出和劈裂拔出2种模式,直接拔出破坏主要出现于钢纤维掺量≥2%且保护层厚度较大的试件中;在不同参数情况下,直径18 mm及22 mm GFRP筋与UHPC黏结强度为19.6~53.7 MPa,同时黏结强度整体上随钢纤维掺量及保护层厚度的增加而增大,随锚固长度的增加而减小;当UHPC钢纤维掺量从0%增加至2%时,GFRP筋与UHPC黏结强度提高幅度达71.4%~74.1%,但钢纤维掺量由2%增加至3%时,出现黏结强度增长减缓甚至不增长现象;保护层厚度对黏结强度的增强作用存在“上限效应”,即当其小于临界保护层厚度时,黏结强度随保护层厚度增加而增长,但当其大于该临界值,增强作用显著减弱;直径18 mm、锚固长度1倍直径的GFRP筋在UHPC中的临界保护层厚度约为3倍直径。基于弹塑性力学中的厚壁圆筒理论,建立了GFRP筋与UHPC黏结...  相似文献   

15.
为给新型预制拼装钢-混组合梁桥设计施工提供参考,针对该类桥采用集束式长短剪力钉的布置特点,考虑剪力钉不同直径、长度、强度和混凝土强度等因素,开展集束式长短剪力钉的抗剪性能、极限承载能力有限元分析和试验研究。采用推出试验的方法,设计制作18个剪力钉推出试件,考察剪力钉长度和直径对集束式长短剪力钉抗剪极限承载力的影响,提出集束式长短剪力钉的群钉荷载-滑移曲线公式。同时,考虑混凝土、剪力钉、钢梁和钢筋的材料非线性,采用ANSYS软件建立推出试验的有限元模型,分析混凝土强度、剪力钉强度、剪力钉相对位置、混凝土板厚等参数对集束式长短剪力钉抗剪力学性能的影响规律,提出集束式长短剪力钉的单钉极限抗剪承载力计算公式。研究结果表明:短剪力钉的直径和抗拉强度、混凝土强度对集束式长短剪力钉的抗剪承载力和刚度有明显影响;而短剪力钉的长度、长短剪力钉的相对布置位置和混凝土板厚对集束式长短剪力钉的抗剪承载力和刚度影响较小;提出的计算公式计算值与试验值吻合较好。  相似文献   

16.
针对目前岩土工程领域中可靠度分析研究较多而可靠度设计研究较少特别是全概率设计涉及更少的现状,提出了锚杆挡土墙中锚杆的全概率设计方法。以锚固体与周围土体的黏结强度以及钢筋的极限抗拉强度为抗力,以主动土压力为荷载,分别建立了结构功能函数。将影响土质边坡中锚杆抗拔性能的相关参数视为随机变量,对其变异系数取值范围进行详尽分析并得到了合理的结果。为解决可靠指标计算函数的反函数难以直接获得解析解的问题,引入了原理简单又能快速计算的二分法。提出了基于二分法的锚杆全概率设计流程并编制了计算程序,该程序可直接算出任意目标可靠指标下的锚杆直径与长度等设计参数值。在算例中使用该全概率设计方法与《建筑边坡工程技术规范》(GB50330—2013)中的定值设计法进行了对比验算,并给出了边坡锚杆按全概率设计的目标可靠指标参考值。结果表明:锚杆锚固段长度的目标可靠指标明显低于钢筋横截面积的目标可靠指标,与土质边坡中锚杆失效大多是由于锚固体与周围土体黏结破坏的实际情况相符合。全概率设计方法可在单一随机变量功能函数的结构设计中直接推广应用。  相似文献   

17.
罗晋明  秦凤江  韩瑀萱  狄谨  韩斌 《公路》2023,(2):125-129
针对钢—混组合梁桥预制桥面板纵向湿接缝的受力特点,提出采用大头钢筋搭接的湿接缝构造,进一步采用模型试验方法研究了大头钢筋搭接湿接缝与直线钢筋焊接/搭接湿接缝的弯剪复合受力性能,获得了试件的裂缝分布、破坏模式、开裂荷载、极限承载力等。研究结果表明,大头钢筋搭接试件的变形特征与直线钢筋焊接试件类似,开裂荷载及开裂荷载对应的竖向挠度接近直线钢筋焊接试件,大头钢筋搭接试件的极限承载力较直线钢筋焊接试件提高7.6%;大头钢筋湿接缝的受力机理可以用拉压杆模型进行解释,试件破坏时作为拉杆的大头钢筋并未屈服,而作为压杆的混凝土已经被压溃。在实际工程中使用强度较高且与预制板界面粘结性能较好的超高性能混凝土或高延性水泥基复合材料浇筑湿接缝,能够更好地发挥大头钢筋的抗拉强度,提高湿接缝的强度与延性。大头钢筋端部的锚固构造提高了纵筋的抗拔能力,使得大头钢筋搭接具备了类似钢筋焊接的性能。钢筋搭接还能大幅提高施工速度,节约建设成本。  相似文献   

18.
为了满足索承结构对拉索索力增长的需求,增加单筋直径和数量来提升索力是一种有效方法,但同时会导致索体直径和盘卷直径过大。为此,基于先前开发的变刚度锚固荷载传递介质,提出一种采用多根高强小直径CFRP筋的弯折锚固系统(简称弯折锚)来同时提升索力和弯曲性能。针对多筋拉索建模复杂以及计算效率低的问题,提出了基于等效圆环的应力释放模型,并利用足尺试验对应力释放模型的可靠性以及锚固方法的有效性进行验证。结果表明:改变单筋间距有利于减小平行锚最外层筋内外侧轴向拉应力差,但对轴向应力和径向应力影响较小。应力释放模型可以有效解决封闭圆环模型的“环箍效应”,使拉索内层筋的环向挤压应力更加趋近于真实的多筋模型。高强CFRP拉索失效模式为整体炸裂式破坏,荷载传递介质几乎没有受到可见的挤压和剪切损伤。应力释放模型对荷载-位移曲线、轴向位移和锚固区拉索轴向应变均具有较高的模拟精度。Φ4-91高强CFRP拉索的实测极限抗拉力为3 393 kN,相应的锚固效率为91%,而锚固效率低的原因在于多筋受力不均匀和未对锚具进行重新设计。自由段拉索轴向应变随荷载的增加而增大,应变片粘贴位置、胶层厚度以及筋材长度误差是导致轴向应...  相似文献   

19.
直螺纹纲筋接头是对钢筋端部冷镦扩粗、切削螺纹,再用连接套筒对接。工程实践表明,这种接头具有强度高、质量稳定、施工方便、连接速度快、应用广泛等优点。结合工程实际,介绍直螺纹钢筋接头的特点、施工工艺及应用。  相似文献   

20.
池州长江公路大桥为主跨828m的双塔双索面混合梁斜拉桥,采用将斜拉索分组集聚式锚固于塔间钢横梁上的新型锚固形式。钢箱施工梁采用悬臂拼装法,边跨预应力混凝土箱梁施工采用支架现浇法。针对大桥集聚式锚固和主梁不对称施工两个特点,应用几何控制法进行施工控制,采取了塔柱偏位和预抬量控制、塔柱应力控制、钢横梁预抬量控制、主梁制造线形及安装线形控制、斜拉索下料长度控制等诸多关键控制技术。成桥后对索塔偏位及应力、主梁线形、斜拉索索力进行了实测,并与理论值进行对比分析,结果表明:结构线形、应力、索力的实测值与理论值较吻合,均满足规范要求;大桥总体控制效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号