首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
马鞍山长江公路大桥北锚碇沉井下沉施工技术   总被引:2,自引:1,他引:1  
在马鞍山长江大桥北锚碇沉井基础下沉施工过程中,根据地层的深入和地质情况变化,先采取沉井四周布置降水井、水力吸泥机取土的排水下沉法,后期则采取搭设钢平台、安装龙门吊等设备进行不排水吸泥下沉的方法,终沉阶段启动空气幕助沉措施,确保了沉井下沉的稳定,在加快施工进度、提高工程质量、降低施工成本等方面取得了显著效果.  相似文献   

2.
南京长江第四大桥北锚碇采用沉井基础,沉井尺寸为69.0 m×58.0 m×52.8 m,置于密实卵砾石层,工程地质条件复杂.沉井共分11节,第1节为钢壳混凝土沉井,其余均为钢筋混凝土沉井.采用打设砂桩和换填砂土复合地基加固法加固地基.在加固地基上现场拼装钢壳沉井节段,浇注第1节沉井混凝土.11节沉井分4次接高下沉,首次下沉采取水力吸泥机取土、降排水下沉,其余3次下沉采取空气吸泥机取土、不排水下沉.沉井下沉就位后按照4个分区的顺序逐区进行封底混凝土施工.施工监测表明,沉井下沉姿态、偏差均控制在规范标准之内.  相似文献   

3.
官厅水库特大桥为主跨720m的单跨悬索桥。大桥南岸锚碇基础为33m高全钢筋混凝土沉井结构,标准平面尺寸为56m×50m。沉井中心距离京包铁路线仅60m,墩位处地质结构主要为粉质黏土和圆砾土。为对既有铁路线进行防护,采用单排钻孔灌注桩作为防护桩,在沉井施工之前完成防护桩的施工。沉井接高之前直接在地面根据沉井刃脚仿形开挖沟槽,沉井底节采用土模法在沟槽内安装模板和绑扎钢筋进行接高,底节完成后沉井采用翻模法正常接高,单次接高3m,接高到15m后开始第1次下沉施工。沉井共分2次下沉施工,进入地下水5m前采用干挖取土下沉,之后采用水下吸泥取土下沉。下沉施工采用潜水泵水下高压射水辅助吸泥,空气幕实施助沉。施工过程快速、平稳有序,确保了铁路路基的稳定,沉井按设计要求下沉到位。  相似文献   

4.
沉井以其整体性强、结构稳定性好、适用土质范围广等特点,对于一些较大埋深的泵井构筑物,是一种较常用的施工方法。通过遂宁某污水厂进水泵房工程沉井施工实例,详细阐述了在砂、卵石地质条件下,通过分析地质、水文特点,选用沉井排水下沉与不排水下沉相结合的施工方案顺利完成该项目建设的整个施工流程,为类似工程提供借鉴和参考。  相似文献   

5.
戴润军 《隧道建设》2006,26(Z1):9-12
深圳前湾过海管廊工程始发竖井采用沉井法施工,要穿越富水高水压地层、淤泥地层、粉质粘土、中密粗砾砂、残积土等不同地层.沉井直径为18 m,深28.54 m,属大型沉井.详细介绍了沉井的施工技术.  相似文献   

6.
超大型沉井首次下沉关键问题研究   总被引:2,自引:0,他引:2  
结合目前世界上平面尺寸最大的矩形沉井的建设,采用有限元分析和现场监控等手段.对沉井下沉方式、开挖方案、接高高度、地基承载力、下沉和稳定性间的关系进行了研究.排水下沉在施工效率和开挖可控性等方面优于不排水下沉,当有充足降水能力和对周边重要建筑物影响不大时优先采用.在结构受力方面,开挖形成的锅底越大隔墙墙底所受拉力越大;采...  相似文献   

7.
武汉鹦鹉洲长江大桥北锚碇新型沉井基础设计   总被引:1,自引:1,他引:0  
武汉鹦鹉洲长江大桥主桥为三塔四跨悬索桥。该桥北锚碇基础经多方案比选采用多圆孔环形截面新型沉井结构。沉井中间大圆孔内设置十字形隔墙,圆环内沿圆周均布有小直径井孔。沉井总高43 m,共分8节,第1节为钢壳混凝土沉井,第2~8节均为钢筋混凝土沉井。北锚碇施工中采用不排水下沉、井壁增加空气幕等措施减小施工难度及风险。采用软件FLAC3D对沉井施工过程进行数值模拟分析,评估施工安全性能、施工引起的环境效应及运营加载后锚碇基础的变形等。计算结果表明,沉井分节下沉施工过程中其结构、地面变形均满足规范要求,施工可有效避免对周围建筑物和长江大堤的不利影响。  相似文献   

8.
马鞍山长江公路大桥北锚碇沉井基础施工中,沉井不排水下沉终沉阶段采用空气幕辅助下沉.该沉井采用3次接高、3次下沉的工艺,在第2节沉井接高时,在其井壁外侧布置竖向风管、水平风管和气龛,并在后续沉井接高中将竖向风管相应接长.终沉阶段向风管内通人压缩气体,气体从气龛孔喷出后使井壁与土壤之间的侧摩阻力减小,从而达到促使沉井快速下沉的目的.沉井下沉中应用空气幕对加快沉井施工进度、提高工程质量、降低工程造价方面有显著成效.  相似文献   

9.
南京长江第四大桥北锚碇矩形沉井高52.8 m,共分11节,分4次接高下沉施工,其中前4节采用整体降排水下沉施工,后7节分3次采用不排水下沉施工,主要介绍北锚碇沉井前4节整体降排水下沉施工关键技术。  相似文献   

10.
南京长江第四大桥北锚碇沉井不排水下沉施工关键技术   总被引:1,自引:0,他引:1  
南京长江第四大桥北锚碇矩形沉井高52.8 m,共分11节,分4次接高下沉施工,其中第5~11节分3次采用不排水下沉施工,主要介绍北锚碇沉井不排水下沉施工所需设备配置、空气吸泥机吸泥工艺等关键技术。  相似文献   

11.
为解决泰州长江公路大桥在复杂条件下深水沉井定位难、摆动大等难题,以该桥中塔沉井为例,采用河工模型试验、CFD方法分析沉井着床阶段的河床冲刷形态和沉井摆动,同时研究终沉阶段下沉系数和沉井施工监控系统.根据分析研究结果,沉井定位采用“钢锚墩+锚系”的半刚性定位系统;采用“小锅底”取土方式下沉;采用信息化实时监控系统实时监测沉井空间几何姿态,确保了沉井准确定位与平稳下沉,最终将其平面误差控制在30 cm以内,垂直度误差为1/363.  相似文献   

12.
永和大桥北岸沉井施工技术   总被引:1,自引:0,他引:1  
介绍了南宁永和大桥北岸沉井的施工。以单管高喷压旋喷形成帷幕墙,减少渗水量,以物探检测帷幕墙体缺陷的位置,避免了处理复喷的盲目性,实现了沉井的排水下沉,并阐述了该地质情况下沉井的下沉规律,对相似地质条件下的沉井施工具有一定的借鉴作用。  相似文献   

13.
马鞍山长江公路大桥南锚碇沉井下沉采取“3次接高,3次下沉”的方案.为保证该方案的施工安全,对沉井下沉可行性指标进行验算,并对沉井首次接高期间的沉降量进行预估.计算结果表明,该方案能够满足沉井下沉初期结构本身的安全,保证首次接高期间的沉降量尤其是不均匀沉降量在允许的范围内.南锚碇沉井下沉时,土体采用分区对称的开挖方式,当沉井下沉至标高-34 m左右时启动空气幕助沉,通过对沉井降排水下沉和不排水下沉的过程进行实时监控和分析,有效地确保了该沉井下沉的安全、平稳.  相似文献   

14.
马鞍山长江大桥南锚碇采用沉井基础,沉井入土深度超过50m,其施工采用“3次接高,3次下沉”的工艺:第1次下沉采用降排水措施,第2次下沉采用半排水措施,第3次下沉采用不排水措施。在沉井第3次下沉过程中,开启空气幕助沉,显著加快了下沉速度。沉井下沉期间,采用综合监控手段,保证了沉井顺利、精确下沉。实践证明,该桥所采用的沉井下沉方案科学合理,下沉到位后沉井几何姿态良好。  相似文献   

15.
常泰长江大桥主航道桥为主跨1 176m公铁合建斜拉桥,通过技术经济综合比选,桥塔基础采用沉井方案。针对超大型沉井基础截面尺寸大、自重重、入土深等问题,提出了减自重、减冲刷的新型台阶型沉井基础方案,通过模型试验及数值分析确定了沉井相关设计参数,并基于地基中土体的三维应力状态和摩尔-库伦强度破坏准则,建立了深大基础三维地基承载力计算表达式。沉井基础成功实施的关键是可控的取土下沉措施,研究了超大型沉井下沉机理,探明随着沉井平面尺度的不断增大,端阻力与井壁侧摩阻力相比逐渐成为控制因素,沉井下沉施工必须进行盲区取土。通过对沉井刃脚下土体破坏形态的研究,提出土体破坏的临界宽度控制法和台阶式取土法,可为沉井下沉施工提供指导。  相似文献   

16.
南京四桥北锚碇基础采用69×58m矩形沉井,沉井顶面高程+4.30,刃脚高程-48.50m,置于密实圆砾石层,下沉深度为52.8m。为使沉井顺利下沉到位,同时减少对长江大堤的不利影响,沉井前期采用深井降水和泥浆泵吸泥的排水下沉方案,后期采用空气吸泥机吸泥的不排水下沉方案。为了不破坏沉井底部圆砾石层,最后启用空气幕助沉措施,使沉井沉至设计位置。  相似文献   

17.
结合马鞍山长江公路大桥南锚碇沉井基础施工,从沉井下沉取土方式、结构安全、施工组织、临时地基处理效果等方面重点介绍了沉井首次接高23 m和地基处理的关键技术,并对地基处理后的沉降值进行了详细的观测.  相似文献   

18.
马鞍山长江公路大桥北锚碇基础沉井施工中,通过有效的科学研究及现场落实,利用换填层换填形状及工艺的改进,提高了换填基础的整体强度;利用合理的钢壳拼装顺序保证了大体积沉井的现场制作精度;利用降排水下沉、不排水下沉的有效组合保证了沉井的快速下沉;利用下沉定位、纠偏技术和监控技术解决了下沉过程中的精度问题;利用空气幕助沉工艺解决了终沉阶段下沉困难的问题;利用首次对分区隔墙封底技术保证了沉井基础的顺利封底;利用分组施工技术解决了填芯施工进度慢的问题;现将这些经验总结出来,供今后类似工程参考。  相似文献   

19.
沉井基础在大型桥梁主墩、锚碇基础中得到广泛应用,并在沉井工程勘察、工程设计与施工技术方面取得了一定的进展。在工程勘察技术发展方面,地质参数获取方法在现有理论分析法、室内试验法、现场试验法的基础上进一步发展了现场载荷板试验法,研制了侧摩阻力监测装置,对地基承载力、侧摩阻力等地质参数认识不断加深。在工程设计技术发展方面,通过对平面形式与尺寸、结构安全、软弱地基砂桩加固等方面不断进行优化设计,形成了适用于大型沉井的结构与地基处理的设计方法。在沉井施工技术发展方面,针对沉井浮运定位与着床,提出了井孔封闭助浮、多阶段多方式长距离浮运技术,以及液压千斤顶多向快速定位着床技术,研发了锚系定位系统;针对锅底开挖下沉的不足,提出了全节点支撑、中心块状支撑等新型开挖下沉工艺;针对高压射水结合泥浆泵设备取土的不足,研制了四绞刀快速破取土设备、可自移动式快速取土设备、机械臂水下定点取土机器人等新型设备;针对人工监测的不足,采用信息化监测系统进行沉井施工监测,形成了自动监测-风险预警-辅助决策控制-设备自动化执行的智能化监测控制技术;在沉井工业化建造技术方面进行了有益探索,将取土平台与供气管、供水管、排泥管、施...  相似文献   

20.
沉井是修建深基础、地下构筑物所广泛应用的施工方法之一。该文通过对某污水处理厂粗格栅及进水泵房T形沉井(构筑物)基础的下沉施工设计计算、施工实践,解决了T形沉井制作及不排水法下沉施工中的稳定性问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号