首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transportation - Railway network is an integral part of the economy of many countries. Identifying critical network elements can help network executives to take appropriate preventive actions...  相似文献   

2.
A new approach for improving the performance of freight train timetabling for single-track railways is proposed. Using the idea of a fixed-block signaling system, we develop a matrix representation to express the occupation of inter- and intra-station tracks by trains illustrating the train blocking time diagram in its entirety. Train departure times, dwell times, and unnecessary stopping are adjusted to reduce average train travel time and single train travel time. Conflicts between successive stations and within stations are identified and solved. A fuzzy logic system is further used to adjust the range of train departure times and checks are made to determine whether dwell times and time intervals can be adjusted for passenger and freight trains at congested stations to minimize train waiting times. By combining manual scheduling expertise with the fuzzy inference method, timetable efficiency is significantly improved and becomes more flexible.  相似文献   

3.
This paper addresses a hub-and-spoke network problem for railroad freight, where a central planner is to find transport routes, frequency of service, length of trains to be used, and transportation volume. Hub-and-spoke networks, often found in air freight, have not been favoured by railways in the past. Such a structure could be profitable, however, if there exist concentrated freight flows on some service links. We formulate a linear integer programming model whose objective function includes not only the typical operational cost, but also cost due to the transit time spent by freight in the network. We then develop heuristic algorithms to solve large scale instances occurring in rail freight systems in France plus Italy; Germany; and a 10-country European network. By assuming that every node is equipped with consolidation capability, we let the final solution naturally reveal potential hub locations, the impact of several of which is studied by sensitivity analysis.  相似文献   

4.
The increase of international freight commerce is creating pressure on the existing transport network. Cooperation between the different transport parties (e.g., terminal managers, forwarders and transport providers) is required to increase the network throughput using the same infrastructure. The intermodal hubs are locations where cargo is stored and can switch transport modality while approaching the final destination. Decisions regarding cargo assignment are based on cargo properties. Cargo properties can be fixed (e.g., destination, volume, weight) or time varying (remaining time until due time or goods expiration date). The intermodal hub manager, with access to certain cargo information, can promote cooperation with and among different transport providers that pick up and deliver cargo at the hub. In this paper, cargo evolution at intermodal hubs is modeled based on a mass balance, taking into account hub cargo inflows and outflows, plus an update of the remaining time until cargo due time. Using this model, written in a state-space representation, we propose a model predictive approach to address the Modal Split Aware – Cargo Assignment Problem (MSA–CAP). The MSA–CAP concerns the cargo assignment to the available transport capacity such that the final destination can be reached on time while taking into consideration the transport modality used. The model predictive approach can anticipate cargo peaks at the hub and assigns cargo in advance, following a push of cargo towards the final destination approach. Through the addition of a modal split constraint it is possible to guide the daily cargo assignment to achieve a transport modal split target over a defined period of time. Numerical experiments illustrate the validity of these statements.  相似文献   

5.
Optimal rail network infrastructure and rolling stock utilization can be achieved with use of different scheduling tools by extensive planning a long time before actual operations. The initial train timetable takes into account possible smaller disturbances, which can be compensated within the schedule. Bigger disruptions, such as accidents, rolling stock breakdown, prolonged passenger boarding, and changed speed limit cause delays that require train rescheduling. In this paper, we introduce a train rescheduling method based on reinforcement learning, and more specifically, Q-learning. We present here the Q-learning principles for train rescheduling, which consist of a learning agent and its actions, environment and its states, as well as rewards. The use of the proposed approach is first illustrated on a simple rescheduling problem comprising a single-lane track with three trains. The evaluation of the approach is performed on extensive set of experiments carried out on a real-world railway network in Slovenia. The empirical results show that Q-learning lead to rescheduling solutions that are at least equivalent and often superior to those of several basic rescheduling methods that do not rely on learning agents. The solutions are learned within reasonable computational time, a crucial factor for real-time applications.  相似文献   

6.
Electric Freight Vehicles (EFVs) are a promising and increasingly popular alternative to conventional trucks in urban pickup/delivery operations. A key concerned research topic is to develop trip-based Tank-to-Wheel (TTW) analyses/models for EFVs energy consumption: notably, there are just a few studies in this area. Leveraging an earlier research on passenger electric vehicles, this paper aims at filling this gap by proposing a microscopic backward highly-resolved power-based EFVs energy consumption model (EFVs-ECM). The model is estimated and validated against real-world data, collected on a fleet of five EFVs in the city centre of Rome, for a total of 144 observed trips between subsequent pickup/delivery stops. Different model specifications are tested and contrasted, with promising results, in line with previous findings on electric passenger vehicles.  相似文献   

7.
This paper develops a fuzzy-neural model (FNM) to predict the traffic flows in an urban street network, which has long been considered a major element in the responsive urban traffic control systems. The FNM consists of two modules: a gate network (GN) and an expert network (EN). The GN classifies the input data into a number of clusters using a fuzzy approach, and the EN specifies the input–output relationship as in a conventional neural network approach. While the GN groups traffic patterns of similar characteristics into clusters, the EN models the specific relationship within each cluster. An online rolling training procedure is proposed to train the FNM, which enhances its predictive power through adaptive adjustments of the model coefficients in response to the real-time traffic conditions. Both simulation and real observation data are used to demonstrative the effectiveness of the method.  相似文献   

8.
The impact of several variables on freight train fuel consumption and performance are assessed using a train performance simulator. These variables include: wind, precipitation, number of cars, and number and type of locomotives. The input to the train performance simulator includes data related to train characteristics and data related to external conditions such as weather. The simulator output represents fuel consumption expected under a given set of conditions. Graphical and cost/benefit approaches were used to assess operations alternatives.  相似文献   

9.
The accuracy of travel time information given to passengers plays a key role in the success of any Advanced Public Transportation Systems (APTS) application. In order to improve the accuracy of such applications, one should carefully develop a prediction method. A majority of the available prediction methods considered the variation in travel time either spatially or temporally. The present study developed a prediction method that considers both temporal and spatial variations in travel time. The conservation of vehicles equation in terms of flow and density was first re-written in terms of speed in the form of a partial differential equation using traffic stream models. Then, the developed speed based equation was discretized using the Godunov scheme and used in the prediction scheme that was based on the Kalman filter. From the results, it was found that the proposed method was able to perform better than historical average, regression, and ANN methods and the methods that considered either temporal or spatial variations alone. Finally, a formulation was developed to check the effect of side roads on prediction accuracy and it was found that the additional requirement in terms of location based data did not result in an appreciable change in the prediction accuracy. This clearly demonstrated that the proposed approach based on using vehicle tracking data is good enough for the considered application of bus travel time prediction.  相似文献   

10.
This paper presents a self-learning Support Vector Regression (SVR) approach to investigate the asymmetric characteristic in car-following and its impacts on traffic flow evolution. At the microscopic level, we find that the intensity difference between acceleration and deceleration will lead to a ‘neutral line’, which separates the speed-space diagram into acceleration and deceleration dominant areas. This property is then used to discuss the characteristics and magnitudes of microscopic hysteresis in stop-and-go traffic. At the macroscopic level, according to the distribution of neutral lines for heterogeneous drivers, different congestion propagation patterns are reproduced and found to be consistent with Newell’s car following theory. The connection between the asymmetric driving behavior and macroscopic hysteresis in the flow-density diagram is also analyzed and their magnitudes are shown to be positively related.  相似文献   

11.
Abstract

The newly launched, June 2009, US High-Speed Intercity Passenger Rail Program has rekindled a renewed interest in forecasting high-speed rail (HSR) ridership. The first step to the concerted effort by the federal, state, rail, and other related agencies to develop a nationwide HSR network is the development of credible approaches to forecast the ridership. This article presents a nested logit/simultaneous choice model to improve the demand forecast in the context of intercity travel. In addition to incorporating the interrelationship between trip generation and mode choice decisions, the simultaneous model also provides a platform for the same utility function flowing between both the decision-making processes. Using American Travel Survey data, supplemented by various mode parameters, the proposed model improves the forecast accuracy and confirms the significant impact of travel costs on both mode choice and trip generation. Furthermore, the cross elasticity of mode choice and trip generation related to travel costs and other modal characteristics may shed some light on transportation policies in the area of intercity travel, especially in anticipation of HSR development.  相似文献   

12.
The process of designing and calculating railway catenary infrastructure, as the way it is carried out currently, is very complex and time consuming. It is necessary expert knowledge of different fields, like design and structural calculus, technical security, legal normative, topography, etc. This process consists of several stages aimed at choosing a design, checking requirements, and calculating structural feasibility, so the communication among the experts may be quite slow. In order to reduce time and effort invested in this process, we propose a system that allows to automate its stages and tasks. Our system provides a valid solution per structure, that complies with design and structural constraints, and with existing railway regulations. The proposed system has been integrated in a high-productivity software tool, that avoids human mistakes due to hand-calculation, allows users a fast design and calculation, and exploits the ability of current computers to run tasks concurrently so as to speed up the process. The computational performance and complexity of the tool, as well as statistics values, are analysed by designing and calculating up to 2048 heterogeneous support structures. Besides, the tool is evaluated through a study case based on a real railway route, obtaining an overall improvement of 82.33% in time invested over the existing process.  相似文献   

13.
This paper proposes an Interactive Multiple Model-based Pattern Hybrid (IMMPH) approach to predict short-term passenger demand. The approach maximizes the effective information content by assembling the knowledge from pattern models using historical data and optimizing the interaction between them using real-time observations. It can dynamically estimate the priori pattern models combination in advance for the next time interval. The source demand data were collected by Smart Card system along one bus service route over one year. After correlation analysis, three temporal relevant pattern time series are generated, namely, the weekly, daily and hourly pattern time series. Then statistical pattern models are developed to capture different time series patterns. Finally, an amended IMM algorithm is applied to dynamically combine the pattern models estimations to output the final demand prediction. The proposed IMMPH model is validated by comparing with statistical methods and an artificial neural network based hybrid model. The results suggest that the IMMPH model provides a better forecast performance than its alternatives, including prediction accuracy, robustness, explanatory power and model complexity. The proposed approach can be potentially extended to other short-term time series forecast applications as well, such as traffic flow forecast.  相似文献   

14.
This paper presents a feeder-bus route design model, capable of minimizing route length, minimizing maximum route travel time of planned routes, and maximizing service coverage for trip generation. The proposed model considers constraints of route connectivity, subtour prevention, travel time upper bound of a route, relationships between route layout and service coverage, and value ranges of decision variables. Parameter uncertainties are dealt with using fuzzy numbers, and the model is developed as a multiobjective programming problem. A case study of a metro station in Taichung City, Taiwan is then conducted. Next, the programming problem in the case study is solved, based on the technique for order preference by similarity to ideal solution approach to obtain the compromise route design. Results of the case study confirm that the routes of the proposed model perform better than existing routes in terms of network length and service coverage. Additionally, increasing the number of feeder-bus routes decreases maximum route travel time, increases service coverage, and increases network length. To our knowledge, the proposed model is the first bus route design model in the literature to consider simultaneously various stakeholder needs and support for bus route planners in developing alternatives for further evaluation efficiently and systematically.  相似文献   

15.
To quantify the level of uncertainty attached to forecasts of CO2 emissions, an analysis of errors is undertaken; looking at both errors inherent in the model structure and the uncertainties in the input data. Both error types are treated in relation to CO2 emissions modelling using a case-study from Brisbane, Australia. To estimate input data uncertainty, an analysis of traffic conditions using Monte Carlo simulation is used. Model structure induced uncertainties are also quantified by statistical analysis for a number of traffic scenarios. To arrive at an optimal overall CO2 prediction, the interaction between the two components is taken into account. Since a more complex model does not necessarily yield higher overall accuracy, a compromise solution is found. The results suggest that the CO2 model used in the analysis produces low overall uncertainty under free flow traffic conditions. When average traffic speeds approach congested conditions, however, there are significant errors associated with emissions estimates.  相似文献   

16.
Complex Shifted Morlet Wavelets (CSMW) present a number of advantages, since the concept of shifting the Morlet wavelet in the frequency domain allow the simultaneous optimal selection of both the wavelet center frequency and the wavelet bandwidth. According to the proposed method, a cluster of CSMW wavelets is used, covering appropriate ranges in the frequency domain. Then, instead of directly processing the instantaneous frequency of each CSMW, an invariance approach is used to indirectly recover the individual harmonic components of the signal. This invariance approach is based actually on the same rotational approach, using the same matrix properties, which consists the core of the well known ESPRIT algorithm. Moreover, the DESFRI (DEtection of Source Frequencies via Rotational Invariance) approach is introduced to support the proposed CSMW method to semi-automated selection of the center frequency of the applied Morlet window. This approach is based on the singular values that are extracted as an intermediate product of the proposed decomposition process. By the application of the method in a multi-component synthetic signal a way to select the critical parameters of the Morlet wavelet, is investigated. The method is further tested on a time-varying acoustic Doppler signal generated by a passing railway vehicle, indicating promising results for the estimation of the variable instantaneous frequency and the multi-component decomposition of it.  相似文献   

17.
Rising levels of air pollution is a major concern across many parts of the world. In this article, we develop a transportation policy to handle air pollution caused by the heavy flow of traffic in urban areas. In particular, we aim to distribute the traffic flow more evenly through a city, by developing a flow algorithm that computes multiple solutions, each of which accommodates the maximum flow. The paper makes the following contributions to build such a transportation policy: (a) Develops a Pareto-optimal Max Flow Algorithm (PMFA) to suggest multiple max flow solutions. (b) Introduces the notion of k-optimality into PMFA to ensure that the suggested pareto solutions are sufficiently distinct from each other – referred to as Pareto-k-optimal Max Flow Algorithm (k-PMFA). (c) Through a series of experiments performed using the well-known traffic simulator SUMO and by doing emission modeling on the New York map, we could show that our policy distributes the air pollution more uniformly across locations.  相似文献   

18.
Sakai  Takanori  Bhavathrathan  B. K.  Alho  André  Hyodo  Tetsuro  Ben-Akiva  Moshe 《Transportation》2020,47(2):997-1025

Freight forecasting models have been significantly improved in recent years, especially in the field of goods vehicle behavior modeling. On the other hand, the improvements to commodity flow modeling, which provide inputs for goods vehicle simulations, were limited. Contributing to this component in urban freight modeling systems, we propose an error component logit mixture model for matching a receiver to a supplier that considers two-layers in supplier selection: distribution channels and specific suppliers. The distribution channel is an important element in freight modeling, as the type of distribution channel is relevant to various aspects of shipments and vehicle trips. The model is estimated using the data from the Tokyo Metropolitan Freight Survey. We demonstrate how typical establishment survey data (i.e. establishment and outbound shipment records) can be used to develop the model. The model captures the correlation structure of potential suppliers defined by business function and provides insights on the differences in the supplier choice by distribution channel. The reproducibility tests confirm the validity of the proposed approach, which is currently integrated into a metropolitan-scale agent-based freight modeling system, for practical use.

  相似文献   

19.
The objective of this paper is to introduce a multi-year pavement maintenance programming methodology that can explicitly account for uncertainty in pavement deterioration. This is accomplished with the development of a simulation-based genetic algorithm (GA) approach that is capable of planning the maintenance activities over a multi-year planning period. A stochastic simulation is used to simulate the uncertainty of future pavement conditions based on the calibrated deterioration model while GA is used to handle the combinatorial nature of the network-level pavement maintenance programming. The effects of the uncertainty of pavement deterioration on the maintenance program are investigated using a case study. The results show that programming the maintenance activities using only the expected pavement conditions is likely to underestimate the required maintenance budget and overestimate the performance of pavement network.  相似文献   

20.
The need to increase measurement accuracy of fuel consumption and pollutant emissions in vehicles is forcing the market to develop chassis-dyno test cells that reproduce on-road conditions realistically.Air-cooling is key to vehicle performance. It is therefore critical that the design of a test cell guarantees realistic cooling of all vehicle components, as important errors in fuel consumption and emissions measurements may otherwise arise. In a test-room, a blower placed in front of the vehicle supplies the cooling air. While there are some guidelines in the literature for the selection of fans required for emissions measurements for standard driving cycles, the information for designing the air supply system for specific tests in other areas is scarce.New Real Driving Emissions (RDE) legislation will force manufacturers to perform on-road measurements of pollutants. This represents a significant challenge due to the variability of conditions coming from non-controlled parameters. In order to optimize vehicles, different tests are performed in cells equipped with a chassis-dyno where the on-road flow field around the vehicle is reproduced as closely as possible.This work provides some guidelines for the definition of the airflow supply system of chassis-dyno facilities for vehicle optimization tests, based on a CFD analysis of the flow characteristics around the vehicle. By comparison with the solution obtained for a vehicle in real road driving conditions, the exit section of the blower and the distance between the blower exit and the car that best reproduce realistic on-road flow conditions in a test room are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号