首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 63 毫秒
1.
为了研制新型转向机构,需分析机构的运动学规律。本文分析了目前中低速磁浮车转向机构几种形式的优缺点,通过对转向架曲线段的运动学分析,得出了转向机构的运动规律,给出了一种新型的空间连杆机构型结构的转向机构,并导出了该机构的运动学计算公式。为中低速磁浮车转向机构设计提供了理论依据。  相似文献   

2.
为探究中低速磁浮车辆-桥梁耦合系统的振动特性,对其在上海临港中低速磁浮试验基地开展了现场动力学试验,研究了车速和桥梁结构形式对耦合系统动力响应的影响;试验车辆采用(悬挂)中置式悬浮架,试验桥梁为25 m混凝土简支梁和25 m钢结构简支梁;为明确2种桥梁的固有振动特性,对其进行了模态测试;提取了不同工况下车辆-桥梁耦合系统的加速度及桥梁的垂向动位移信号;计算了垂向和横向Sperling指标、动力系数、梁端转角等车辆-桥梁耦合系统关键动力指标,详细分析了耦合系统的动态响应特性,评估了系统的振动水平。研究结果表明:混凝土梁和钢梁的垂向一阶固有频率分别为7.32、7.72 Hz,2种桥梁的各项关键动力指标均满足相关标准要求;混凝土梁和钢梁的最大加速度分别不超过0.2、1.4 m·s-2;当车速为5 km·h-1时,钢梁的垂向动力响应幅值约为混凝土梁的7.6倍;在测试的速度范围内,车辆的横向Sperling指标均小于2.5,表明车辆在混凝土梁和钢梁上运行时均具有优秀的横向平稳性;车辆空气弹簧悬挂系统的垂向固有频率峰值在车速为25 km·h-1时达到最大,通过混凝土梁和钢梁的垂向Sperling指标分别达到2.687、3.340。测试结果可为中低速磁浮车辆-桥梁耦合系统的优化设计和数值模型验证等提供有价值的参考。  相似文献   

3.
为研究桥梁柔性对中低速磁浮车辆在曲线半径为70.0 m的平曲线上运行时的动态响应影响,对通过柔性桥梁和刚性轨道时的车辆动态响应开展了对比分析. 首先,建立了122个自由度的车辆空间动力学模型,模型中考虑了具有主动悬浮与被动导向特性的二维磁轨关系;其次,利用三维铁木辛柯梁参数化建模方法,建立了由柔性桥梁组成的平曲线有限元模型;最后,通过悬浮力的联系形成了车辆-曲线桥梁系统刚柔耦合动力学模型. 研究结果表明:17.0 m跨径的圆曲线桥梁的自振特性和动位移响应满足相关标准要求;与车辆通过刚性轨道相比,柔性桥梁作用下的车辆系统动态响应更为剧烈,这种差异在车辆系统的横向动态响应上体现明显,而悬浮间隙和车体垂向加速度的响应差异较小,考虑刚性轨道时将高估车辆的曲线通过能力;柔性桥梁和刚性轨道两种模型计算得到的电磁铁最大横向位移不超过6.0 mm,悬浮间隙可在额定值的 ± 4.0 mm内波动,表明在开展对比计算的工况下车辆具有良好的曲线通过性能.   相似文献   

4.
为研究中低速磁浮道岔主动梁关键参数对车岔耦合振动的影响,进行了各工况下磁浮道岔主动梁的模态测试,并建立了考虑道岔主动梁弹性振动的车岔耦合动力学模型,对悬浮稳定性进行了分析. 通过仿真与试验对比,对道岔主动梁的模态特征进行了修正,并基于修正后的车岔耦合动力学模型,研究了磁浮道岔主动梁不同设计参数对悬浮稳定性的影响规律. 研究结果表明:中间台车采用50 MN/m的弹性约束进行等效,能够达到比较理想的误差要求;二台车支撑方案相比三台车支撑方案,更容易避开磁浮车岔耦合的共振频率;随着主动梁一阶垂向弯曲频率的不断增大,悬浮控制参数的稳定区间越小,当道岔主动梁垂向弯曲频率大于12 Hz时,更容易出现车岔耦合振动现象;随着道岔主动梁刚度的增加,悬浮控制参数的稳定范围越小;增加道岔主动梁结构阻尼比不能解决车岔耦合共振问题,只能降低振动幅值大小;随着道岔主动梁线密度的增大,越不容易出现车岔共振现象,当线密度低于1 500 kg/m时,悬浮稳定区间将急剧下降;中间台车的等效支撑刚度越大,控制参数的稳定区间越小,但影响幅度不大.   相似文献   

5.
低速磁浮车辆动力学建模与导向机构仿真分析   总被引:5,自引:0,他引:5  
在分析低速磁浮车辆结构及其运动学关系基础上, 利用SIMPACK软件, 建立了含主动悬浮控制的76个自由度的磁浮车辆虚拟样机模型, 开展了基于整车动力学的低速磁浮车辆导向机构仿真分析, 研究了T形臂、横向滑台及两者之间的运动学规律。仿真结果表明: 在300 m半径曲线和三转向架结构条件下, 为了保证磁浮车辆顺利通过曲线, 磁浮车辆导向机构前T形臂长度应大于后T形臂长度, 两者比值的优化区域在1.50和2.00之间; 车辆头尾T形臂相对于车体的转角幅值大小基本相同, 方向相反, 对应滑台的横向位移曲线形状与幅值基本相同; 同一转向架前后滑台的最大横移量之比等于前后T形臂长度之比。  相似文献   

6.
为掌握磁浮轨道梁在长期外界环境作用下产生的复杂的温度场时变规律,在长沙磁浮运营线的轨道梁内埋设温度传感器,通过1.5 a的现场温度监测,获得测点温度时程曲线,并提出了基于时间序列加法模型求解的方法. 该方法将测点温度分解成均匀温度与波动温度,并利用傅立叶曲线拟合方法研究二者的时程曲线,得到轨道梁温度场时变规律. 研究结果表明:均匀温度与当地气候变化相关,各测点均温基本相同,结构温度时变趋势可用中位值为20.41 ℃、变化幅值为12.61 ℃、初相位为20 d、周期为365 d的余弦函数表示长沙磁浮轨道梁均温时程曲线;波动温度与日照作用相关,以日为周期在0线上下波动,可用两个正弦函数分段拟合升降温时程曲线.   相似文献   

7.
为了减少中低速磁浮轨道检测工作量和轨道检测设备占用线路的时间,提升轨道不平顺检测效率,提出了通过行车记录仪采集悬浮系统有关数据来筛选轨道疑似不平顺的方法;依据轨道线路不平顺异常对悬浮间隙、悬浮电磁铁垂向加速度及电磁铁电流等都会造成明显突变异常的基本思想,基于Box-Whisker图设定筛选阈值,利用悬浮间隙、悬浮电磁铁垂向加速度及电磁铁电流等数据进行三元阈值的异常筛选,并针对可能漏筛的数据再次分别基于一元和二元阈值筛选,并综合上述结果来判定轨道路段的异常等级,将多次被筛选出的异常判定为疑似不平顺路段;为进一步提升不平顺异常路段筛选结果的准确性,依据同一车厢的不同悬浮控制点通过相同不平顺异常路段时的数据应体现出重复性异常的思想,融合行车记录仪记录的多个悬浮控制点数据的筛选结果,以此综合评判路段的疑似不平顺,在此基础上应用提出的方法分析了长沙磁浮线M车厢左侧10处悬浮控制系统的数据。研究结果表明:提出的方法使现有全路段不平顺检测方式转变为利用轨检设备有针对性地检测疑似异常路段的方式,线路检测维护时间可减少20%左右。  相似文献   

8.
为方便、快速地分析多点输入轨道车辆的平稳性,基于虚拟激励原理,提出了平稳性分析方法。当车辆系统受多点全相关随机激励时,应用此方法将多输入多输出系统的响应功率谱矩阵的计算化简为两个矢量相乘,利用所获得的功率谱和随机振动中的反演技术,分析轨道车辆的平稳性指标。以TR08磁浮车辆为原型,建立了磁浮车辆的垂向动力学模型,运用虚拟激励分析方法计算了磁浮车辆的响应功率谱。在频域中,磁浮车辆车体中心处的Sperling指标为1.653,车辆的平稳性等级为优,通过反演运算获得了响应的幅值谱和时间历程,分析过程简单,计算结果准确。  相似文献   

9.
《轨道交通》2009,(8):55-55
北控磁浮在此次CRTS CHINA 2009展会现场搭建了新颖的个性化展台,采用了视频、宣传册、展板等多种展示形式,宣传中低速磁浮交通的特点、研发运作模式、研发成果和产业化前景。特别是在展台前安稳运行的磁悬浮列车模型,吸引了不少展商及专业观众的目光。  相似文献   

10.
采用二维电磁场理论对直线电机气隙磁场的纵向分量和垂向分量进行求解, 得到了电机牵引力和法向力的解析表达式, 利用直线电机试验台对解析计算方法进行检验, 对比6~18 Hz恒滑差频率下牵引力和法向力随速度的变化; 建立了三悬浮架单节磁浮车辆动力学模型, 仿真对比了车体和悬浮架分别在1、3、5、8 kN冲击力下的振动响应; 计算了单节中低速磁浮车辆牵引特性, 分析了不同滑差频率对车辆牵引性能的影响; 综合考虑电机法向力对悬浮系统的影响和车辆的牵引需求, 提出了变滑差频率控制策略。研究结果表明: 电机牵引特性一般包括恒力区和恒功区, 恒力区初级电流最大值为390 A, 恒功区电压最大值为212 V, 恒力区牵引力变化较小, 恒功区牵引力衰减较快; 滑差频率越小, 电机起动牵引力和法向力越大, 恒力区越短, 反之亦然; 法向冲击力小于8 kN时车辆平稳性指标等级均达到优秀, 但为了减小悬浮系统的负担, 电机法向力应越小越好; 较低的滑差频率使车辆低速段牵引性能更强, 但采用较高的滑差频率有利于提高全速度范围的牵引性能; 在变滑差频率控制策略中起动滑差频率的选择综合考虑车辆的牵引性能和悬浮能力, 速度达到恒功转折点后滑差频率逐渐增大, 该策略使电机恒力区牵引力适中, 恒功区牵引力始终为电机所能发挥的最大值。  相似文献   

11.
为评估某中低速磁浮列车悬浮架构架是否满足强度要求,利用自主研发的全尺寸中低速磁浮强度试验台对该悬浮架构架开展了静强度与疲劳强度试验,基于有限元和多体动力学仿真结果,确定了悬浮架构架的应力集中部位与承载特性;据此,在悬浮架构架上合理布置了系列测点,测量了车辆在超常载荷、模拟主要运营载荷和模拟特殊运营载荷3类工况下悬浮架构架的应变响应信号,根据悬浮架构架不同部位的材料特性,通过转换计算评估了悬浮架构架的应力水平。研究结果表明:在静强度试验中,悬浮架构架的较大应力点主要分布于托臂拐角、支撑轮安装座与防侧滚梁连接处、停放制动滑橇安装座等处,而在疲劳强度试验中的薄弱点主要为纵梁与托臂连接的焊缝处;相比于列车的常规运行工况,在悬浮失效、超载落车制动等特殊运行条件下,悬浮架构架的静强度和疲劳强度的应力幅值分别增加了1.06和4.77倍;所有测试工况下悬浮架构架受到的最大拉应力、最大压应力分别为67.22、-20.30 MPa,且最小安全系数为1.71,说明悬浮架构架满足结构强度要求;所有测试数据结果均在各自材料的Goodman-Smith疲劳极限图包络线内,说明悬浮架构架满足疲劳强度要求;经渗透探伤查验,悬浮架构架的任何位置上均未发现裂纹,验证了悬浮架构架疲劳强度评估结果的可靠性。  相似文献   

12.
为提高中低速磁浮列车的承载能力,基于等效磁路法建立了全尺寸悬浮电磁铁磁路模型,推导了包含悬浮电磁铁结构参数的垂向电磁力表达式;基于影响因素分析方法,对比研究了线圈匝数、电磁铁宽度、极板长度等结构参数对悬浮电磁铁垂向电磁力的影响;通过单电磁铁试验台对比了不同悬浮间隙和线圈电流下,线圈匝数分别为320和410时悬浮电磁铁垂向电磁力和浮重比的变化规律,验证了优化线圈匝数对提升中低速磁浮列车悬浮性能的可行性。研究结果表明:相比电磁铁宽度和极板长度,线圈匝数是影响磁浮列车悬浮性能的主要因素,但在10~30 A的小电流范围和大悬浮间隙(>10 mm)的范围内,改变线圈匝数对悬浮电磁铁垂向电磁力的提升效果较弱;当悬浮间隙为8 mm,线圈电流为30~50 A时,410匝悬浮电磁铁相对320匝悬浮电磁铁对悬浮电磁铁垂向电磁力的提升效果明显,平均垂向电磁力提升约2.94 kN,提升比例约为27.8%,平均浮重比提升约2.83,提升比例约为15.33%;随着线圈电流进一步增加,悬浮间隙进一步减小,平均垂向电磁力提升约3.38 kN,提升比例约为25.5%,平均浮重比提升约3.06,提升比例约为13.22%,说明当悬浮间隙为8 mm,线圈电流为30~50 A时,410匝悬浮电磁铁对中低速磁浮列车悬浮性能的提升效果最佳,而410匝悬浮电磁铁垂向电磁力的方差和标准差比320匝悬浮电磁铁的大,说明增加线圈匝数会使得悬浮电磁铁垂向电磁力对参数的变化更敏感。  相似文献   

13.
分析了交叉回线区域空间磁场分布, 利用磁通密度纵向分布周期性特征, 将车辆位移、速度用感应电压包络信号相位角与角速度来表征; 建立了采用简单交叉回线的车辆测速定位状态空间方程组, 将车辆运行位置和速度作为状态变量在测试过程中连续输出; 考虑实际运行工况下的复杂电磁环境, 引入了噪声自适应算法, 提出了基于新息自适应的磁浮车辆实时连续测速定位计算方法; 在实验室条件下建立了交叉感应回线标定系统, 验证了方法的基本原理; 为了验证方法的有效性和准确性, 进了数值仿真算例分析, 考虑正常噪声和突变噪声工况, 并对比了包含和不包含自适应噪声处理过程的计算结果。试验结果表明: 不同间隔距离条件下, 感应电压包络线都接近于正弦波, 1次谐波是包络信号的主要成分, 相同阶次的谐波幅值与间隔距离成近似线性关系, 与理论分析结果一致; 在正常噪声区段, 速度误差不超过0.03 m·s-1, 定位误差约为3 mm, 在突变噪声区段, 速度误差均值为0.027 m·s-1, 最大值为0.130 m·s-1, 定位误差均值为4.82 mm, 最大值为23.39 mm, 说明测速定位方法可以满足实际应用需求; 数值仿真中突变噪声区段的低信噪比信号在实际应用中是极端情况, 对比正常噪声区段和突变噪声区段的计算结果可知改善输入信号的信噪比可以明显提高测试精度。  相似文献   

14.
对高速公路合理限速值的确定方法进行了研究, 以多体动力学仿真软件ADAMS为平台, 建立了车辆模型、道路模型、车-路耦合模型、车辆行驶过程仿真试验模块和车辆安全状态识别模块, 并开发了高速公路车-路条件下安全速度仿真识别系统。运用该系统对车辆在弯道与下坡路段的行驶状况进行了虚拟仿真分析。试验结果表明: 车辆在弯道与下坡路段的安全行驶极限速度仿真结果与标准标定的运行速度的相对误差为1.05%~3.80%, 该仿真识别系统可行。  相似文献   

15.
国家自然科学基金委员会于2020年新增交通与运载工程一级学科(E12)。介绍了学科成立首年科学基金项目的申请、受理、评审和资助情况;描述了学科资助领域、二级代码及内涵;介绍了学科规划、未来发展、重点及以上类别的项目布局,阐述了推动成果转化与未来申请代码调整等学科管理工作。2020年度交通与运载工程学科接受各类项目申请1 241项,受理项目申请1 231项,未通过形式审查不予受理的项目仅占申报总量的0.8%;2020年度交通与运载工程学科涉及申请依托单位共计260家,申请数前三的依托单位分别为同济大学、长安大学和西南交通大学,面上项目、青年基金项目和地区基金项目的整体上会率分别为23.9%、26.5%和21.2%;2020年度交通与运载工程学科共资助197项,合计经费8 970万元,面上项目、青年基金、地区基金各资助102、81和10项,直接经费平均资助强度分别为58万元、24万元和35万元;未来学科将进一步针对学科研究力量分布、关键科学问题、发展趋势、中远期发展、实现“交通强国”面临的重大瓶颈问题以及科学代码的优化调整等方面开展战略调研,为学科未来发展和决策提供支撑;未来对学科代码及研究方向的优化和调整将进一步突出交通行业特色,引导科技工作者聚焦不同交通运输系统自身发展特点与“卡脖子问题”背后的科学问题,加快研究成果落地,促进交通行业技术进步,支撑“交通强国”建设。  相似文献   

16.
作为国家自然科学基金技术板块的新成员,2021年交通与运载工程学科围绕学科建设中心,以《交通与运载工程科学问题百问》一书的征集与编撰、学科代码和关键词的梳理工作为抓手,通过系列活动厘清学科边界,汇聚人气,提升申报量;以学科树为工具,分领域召开系列研讨与论证会议,完善学科体系建设,促进各运输体系均衡发展;强化需求牵引、问题导向,统筹布局学科重大类项目,推进人才队伍有序健康发展,破除“四唯”倾向,推动科技成果从“书架”走向“货架”,加快新学科的发展。本文具体内容包括:2021年度交通与运载工程学科基金项目的申请、受理、评审和资助情况,学科资助领域、二级代码调整思路及学科边界定义,未来学科工作重点、重点及人才类以上类别项目布局与推动成果转化等学科管理工作计划。未来学科将进一步深化学科调研,利用调研成果统筹学科重点和重大项目布局,促进人才队伍建设,完善科学基金成果贯通机制,积极推动成果转化落地。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号