首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
应用有限元分析软件M IDAS/GTS,采用地层结构法分析了双洞子公路隧道开挖支护过程中的稳定性问题。分析结果表明:开挖不同断面过程中,围岩内最大主应力集中在钢架脚部,钢架架设时应及时施工锁脚锚杆,必要时可采用小导管注浆等方法对拱架脚部围岩进行加固;从衬砌变形角度分析,变形量最大处为拱顶下沉及底脚位置,施工中应注意对拱顶沉降的监测,逐步开挖核心土,保证施工及结构安全,同时应及时施作基础工程,以控制洞室变形;围岩最不利位置出现在拱顶及仰拱两侧,应是重点加强部位。  相似文献   

2.
通过对窑沟隧道周边收敛、拱顶下沉、围岩压力、钢拱架内力、喷射混凝土应力和锚杆轴力进行监控量测,了解隧道开挖过程中马兰黄土隧道围岩变形特性及支护结构受力特性。结果表明:施工过程中拱部沉降的量值远大于净空收敛的量值;围岩压力分布不均匀;钢架支护在隧道支护体系中起着非常重大的作用;拱部系统锚杆对结构的稳定性作用不大;水对拱顶沉降的影响非常严重。  相似文献   

3.
针对高地应力软岩隧道开挖时围岩大变形问题,以某隧道圆形扩挖段为背景,采用三台阶法施工和3层初期支护+小导管注浆+二次衬砌的复合结构支护,并通过现场监测、数值模拟和理论计算研究开挖过程中的围岩变形及支护结构受力。结果表明:上、中台阶开挖时的隧道围岩变形速率较大,在仰拱封闭和第3层初期支护施作完成后,隧道变形趋于稳定;采用3层初期支护结构可有效改善隧道周边围岩应力,3层初期支护基本都是受压结构,拱腰和边墙处竖向应力最大,拱顶处水平应力最大;二次衬砌拱腰、拱顶、拱脚和边墙处安全系数均大于规范要求,保证隧道结构安全。  相似文献   

4.
为研究超大跨度隧道分部开挖法施工中隔壁结构的施工力学行为,以山东滨莱高速公路改扩建工程双向八车道乐疃隧道为依托,基于初期支护钢架与中隔壁钢架之间的内力传递、变形协调及拱脚变位,将支护体系等效为支座可移动的三次超静定无铰拱-梁固接结构,建立了上台阶先导初期支护钢架-中隔壁钢架共同承载变位力学计算模型,采用理论分析、现场测试和力学模型计算相结合的方法,对超大跨度隧道上台阶CD法施工时中隔壁的力学行为进行分析。研究结果表明:拱顶沉降和周边收敛主要经历急剧增长、缓慢变形和趋于稳定3个阶段,且各变形值均小于设计预留变形量150 mm;受施工工序和结构约束条件变化的影响,钢架内外侧应力整体呈现出先急剧变化后逐渐趋于稳定的规律,各测点应力小于型钢屈服强度235 MPa;力学模型计算结果和现场实测数据的平均相对误差为12.6%,且规律基本一致;钢架轴力在上台阶施工过程中始终为受压,且最大值均在钢架拱脚处,受后导开挖影响,中隔壁钢架轴力增大,初期支护钢架轴力减小;先导开挖时钢架弯矩大部分部位为正,拱顶部位为负,受后导开挖影响,中隔壁钢架正弯矩值及正弯矩区域减小,同时初期支护钢架正弯矩区域减小,钢架拱脚附近弯矩出现负值;钢架结构整体处于偏心受压状态,受后导开挖影响,中隔壁钢架和初期支护钢架小偏心受压区域均发生移动,且两者钢架小偏心受压长度占比增大。  相似文献   

5.
大断面公路隧道浅埋段地质条件多变,结构受力复杂;加之处于层间结合力差的滇中红层地区,在隧道开挖过程中极易发生围岩坍塌、失稳,支护变形、开裂等灾害影响。考虑隧道施工过程及运营期间的安全性和结构耐久性,应根据隧道所处地质环境选择合适的施工工法;本文工程背景为宜石公路昆明段山冲箐隧道,借助Midas GTS/NX有限元软件研究V级围岩条件下不同开挖工法对隧道稳定性的影响。结果表明CRD工法在V级围岩段施工时,隧道右拱腰处水平位移值最小;采用双侧壁导坑法开挖时,隧道左拱腰位移、拱顶沉降以及围岩塑性区分布范围较小;基于不同工法结果对比,建议在类似工况中采用双侧壁导坑法。  相似文献   

6.
为研究浅埋软弱围岩隧道变形特征和施工控制措施,以拱北隧道为研究对象,分析隧道所处工程地质条件,并选取桩号D0+100~0+150洞段设置3层6处监测点,获取围岩变形位移数据,利用神经网络法反演获取隧道变形破坏参数与规律;以此为基础,利用ABAQUS有限元软件对比分析了软弱围岩隧道在不同施工方法、开挖方式和支护处理措施下的优缺点,并提出了针对性的解决方案。研究表明:拱北隧道初期支护过程中,拱顶部位沉降可达250~260 mm,拱脚部位变形较硬质岩隧道小,一般为197~200 mm,且仰拱初期支护过程中发生隆起的现象较为频繁;其次,隧道大变形的发生具有明显的时空效应特点,拱北隧道大变形发生部位集中在支护最薄弱位置,从这些部位逐步扩展为大变形破坏;采用分层开挖法,开挖台阶高度为3.5 m时较4.5 m高度台阶其顶拱沉降值缩小10.5%,水平向位移降低约5.2%,优势较大;借助可伸缩式锚杆和钢拱架等柔性和刚性支护措施相结合的方式,有效释放围岩压力,提高了拱北隧道围岩稳定性。对于浅埋软弱围岩隧道施工过程中采用以上施工及处理措施具有一定借鉴和推广价值。  相似文献   

7.
文中以开挖面积为604 m2的超大断面清水江通航隧洞为研究对象,以数值分析手段模拟超大断面软弱围岩隧道施工过程中围岩及支护体系受力变形特性。研究表明,隧洞开挖过程中,拱顶围岩变形影响区域较边墙大,但边墙处围岩受剪应力较拱顶围岩更高;采用长锚杆加固拱顶围岩,可取得较好效果,但长锚杆对边墙围岩加固作用不明显,边墙处更适宜采用短锚杆;隧洞临时支撑拆除前,下导坑临时侧壁弯矩、轴力急剧增大,接近屈服破坏;临时支撑拆除后,主洞初期支护受力明显增大,拱部和仰拱以受弯为主,边墙以受压为主,受力最不利位置为拱脚。  相似文献   

8.
深圳地铁四号线K9+125~+255段为富水流沙地层,岩体破碎自稳能力差,且洞身穿越立交桥群,多条管线穿在隧道上方,隧道围岩变形控制要求极高,施工风险大。采用现场监控和数值模拟,对CRD法开挖进行了动态分析。研究结果表明:尽早施做临时支撑对抑制未闭合结构早期的沉降起着重要的作用,拆除临时支撑时,结构的最大位移增大约40 %;各部开挖引起拱顶下沉量具有良好的分布规律,可用于对最终拱顶下沉量的预报;施工中应重点监测和控制开挖CRD1的拱顶下沉量。  相似文献   

9.
《公路》2021,66(7):374-377
采用翠屏隧道的建筑内轮廓、围岩参数及支护参数,运用MIDAS GTS NX模拟研究TBM导洞+上下台阶扩挖法开挖公路隧道时,TBM导洞在建筑内轮廓的顶部、上部、中部、下部及边墙处等5个不同位置处对隧道洞周围岩变形的影响。结果显示:导洞在下部时,隧道拱顶及拱底的位移值相对导洞在其他位置时最小,对控制拱顶及拱底位移变形最有利;导洞位置在边墙处时,洞周左右边墙位置处的位移变形量最大;导洞沿拱顶、上部、中部、下部等4个位置逐渐往下,洞周左右边墙位置处的位移变形量逐渐减小,即导洞在下部时洞周左右边墙位置处的位移变形量最小。即导洞在下部时,位移变形量在洞周左右边墙、拱顶及拱底位置处时位移变形量最小。推荐在采用TBM导洞+上下台阶扩挖法开挖公路隧道时,导洞布置在建筑内轮廓的下部。  相似文献   

10.
为了探索软弱围岩中公路隧道入口段的岩石力学和变形特性,本文选取某采取环形开挖预留核心土法施工的公路隧道入口段为例,借助于MIDAS/GTS有限元软件对围岩的力学和变形特性进行了研究,得到主要结论如下;首先,随着隧道开挖和支护的进行,洞口围岩竖向和水平向应力均持续增大,周围岩体的受开挖影响范围也逐渐增大,但对受影响最大的隧道拱脚位置围岩应力分析可见,开挖上半断面留核心土对围岩的干扰最大;其次,施工过程中围岩受力在其可承受范围内,但隧道拱脚和隧道左侧拱腰上部位置出现明显的应力集中现象;最后,隧道开挖破坏了原有围岩的稳定性,使得隧道两侧拱腰向隧道方向产生对称的的位移,拱顶产生向下的位移。  相似文献   

11.
基于特征曲线法,建立考虑围岩刚度劣化本构模型开展不同开挖方式下隧道开挖空间变形特性研究,并与工程实际监测数据进行对比分析。结果表明:考虑刚度弱化后,三种开挖方式拱顶位移数值均增大;隧道开挖只对工作面前方20 m范围内围岩结构产生影响,对20 m范围以外影响甚微;在开挖工程中,距开挖工作面±10 m范围内拱顶围岩位移变化最大;为了有效控制围岩变形,开挖方式的优先顺序依次是中隔壁方式、预留核心土和台阶法;与未考虑刚度弱化的经典本构模型相比,采用刚度弱化本构模型计算得到的围岩压力释放过程更符合实际情况,拱顶位移计算结果与工程现场实际监测数据更为接近。  相似文献   

12.
乐静  杨朝帅 《隧道建设》2013,33(1):17-21
为了研究在软弱围岩隧道三台阶开挖过程中,施工工序对围岩变形、应力的空间效应影响,以某软弱围岩双线铁路隧道为例,通过数值模拟,分析隧道周边围岩的变形和应力的空间变化过程,并将计算结果与现场监测数据进行对比验证。结果表明: 先行最大拱顶沉降和先行最大收敛位移分别达到总位移的53.3%和67.28%;上、中台阶的开挖对拱顶和起拱线处围岩应力的变化影响巨大;锁脚旋喷桩与围岩之间的压力变化受上、中台阶开挖的影响较大,且待开挖台阶土对隧道周边产生外撑力,能对接触压力有一定影响。  相似文献   

13.
为验证重载铁路黄土隧道初期支护推广应用格栅钢架的可靠性,通过全环格栅钢架混凝土1∶1模型试验,现场初期支护变形收敛、围岩压力、格栅钢架和喷射混凝土力学性能测试,以及基于大数据的初期支护变形收敛数据统计分析等方法进行研究。研究结果表明:1)全环格栅钢架混凝土结构表现出较高的承载能力兼顾较大的变形协调能力,H180型格栅钢架混凝土结构在极限状态下可承载相当于32.56 m的黄土自重; 2)格栅钢架可应用于Ⅳ、Ⅴ级围岩大跨度黄土隧道,能保证围岩稳定及初期支护结构的安全; 3)大跨度黄土隧道初期支护采用格栅钢架,初期支护拱顶下沉及水平收敛值控制良好,总体在开挖预留变形量控制值内。  相似文献   

14.
采用数值分析方法,研究了隧道断层破碎带对施工期间拱顶位移、边墙主应力以及喷射混凝土内力的影响.分析结果认为,隧道开挖时,对断层带的拱顶下沉位移影响较大,但存在一定的影响范围.隧道拱顶和边墙发生塌方破坏的可能性最大,需要加强对断层带隧道施工过程的围岩变形监测,确保施工安全.  相似文献   

15.
针对围岩失稳阈值的不确定性,通过有限元软件模拟隧道开挖过程,基于突变理论研究不同开挖步对应掌子面的变形规律,结合二分法使用曲线拟合法分析围岩失稳阈值,预判围岩失稳时机。结果表明:Ⅳ类围岩隧道宜采用台阶法边开挖边支护施工,拱顶沉降为隧道开挖主要风险控制点;突变理论能够动态把握围岩变形,模拟工况台阶法有支护、无支护、全断面法施工围岩变形突变分别发生在开挖70、56、60m位置。  相似文献   

16.
依托广西百色达康隧道实际工程,简化隧道施工模型,通过FLAC 3D数值模拟软件构建了隧道施工动态三维模型,模拟了大断面隧道采用双侧壁导坑法施工流程,得到在不同施工步骤时隧道围岩应力、变形,以及隧道衬砌的轴力、弯矩变化情况,探究动态施工过程中围岩变形规律和支护结构受力变化规律,并且分析了隧道向前掘进时距掌子面不同距离的断面拱顶、拱底的变形量,分析了其变化规律,对双侧壁导坑法施工时超前支护与施工量测具有参考作用。数值分析结果表明,隧道开挖过程中隧道拱顶底达到竖直位移极值,左、右拱腰处产生水平位移极值;隧道开挖对前方围岩影响范围大约为隧道跨度;隧道衬砌轴力与弯矩最大值均出现在左侧导洞初期支护中期支护中部偏上,二衬拱脚两侧和隧道洞室顶部和仰拱处,所受内力较大。  相似文献   

17.
以某穿越断层破碎带隧道工程施工为依托,借助FLAC 3D有限元分析软件,数值模拟分析穿越断层破碎带隧道在预留核心土法施工时隧道围岩变形情况,并通过布设相应监测点,分析开挖过程中监测点的位移变化情况,得到拱顶沉降、拱腰水平位移、仰拱隆起位移以及对应最大变形量变化规律。分析发现在开挖至破碎带临近区域围岩位移发生突变,在相应部位支护施工需采取必要的加强措施;使用预留核心土法施工该断层破碎带隧道,围岩整体变形不大,施工安全可控。  相似文献   

18.
以贵州盘兴高速公路司家寨小净距隧道工程为例,采用有限差分法对不同净距下的小净距隧道进行了数值模拟研究,对比分析其拱顶沉降、拱底竖向位移、中夹岩竖向位移及剪应变增量的变化规律,探讨Ⅴ级围岩下的隧道合理净距以及围岩稳定性。结果表明:净距较小时隧道左右洞开挖的应力叠加效应明显,随着净距的减小,计算的各数值明显增大,围岩特别是中夹岩极有可能发生屈服破坏甚至失稳;小净距隧道选择净矩D为10 m较为合适。隧道的最大变形出现在拱顶、拱底靠近中夹岩柱方向约20°左右位置,而中夹岩的最大变形主要出现在中岩体靠近开挖断面位置且处于上下分布。  相似文献   

19.
《公路》2020,(5)
以柞山高速段小岭隧道为依托,建立数值分析模型对隧道洞口浅埋偏压段开挖与支护过程进行数值分析,探讨了围岩与衬砌材料的变形与应力变化规律。研究结果表明:偏压导致隧道洞口两侧出现超过18mm的变形差,通过锚喷支护可将该变形差控制在7mm以内;偏压隧道稳定性最不利位置出现在拱顶与底部处,在拱顶右侧与拱底左侧出现应力集中现象;双侧壁导坑法相对于预留核心土开挖法可以更好地控制拱顶处竖向变形;设计中应合理设计衬砌参数,防止锚杆等材料处于屈服状态,保证隧道施工安全。  相似文献   

20.
《公路》2015,(4)
回归分析是对一系列具有内在规律的数据进行处理,通过处理和计算得到两个变量之间的函数式关系。以光坑山隧道某断面拱顶沉降的实测数据为基础,依照新奥法施工中岩体开挖变形的时间效应原理,利用数学方法对拱顶下沉数据进行了回归分析,得到该隧道在开挖过程中围岩变形随时间的变化关系,及时对若干时间内的隧道围岩稳定性进行有效的预测,为后期设计修改、施工方案变更等提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号