首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
针对车辆载荷和道路坡度难以实时准确测量的问题,运用无迹卡尔曼滤波算法设计了整车质量和道路坡度联合估计算法,快速有效地估计整车质量和道路坡度,并根据实时辨识结果,采用线性插值的方式构建自适应换挡策略实现了电动汽车换挡规律的动态修正,实车试验结果表明,该算法能够有效地避免因车辆载荷或道路坡度变化带来的车辆意外换挡和换挡循环问题。  相似文献   

2.
基于动力学方法估计自动变速器坡道换挡控制所需的道路坡度和整车质量。建立7速双离合自动变速器动力学模型,利用卡尔曼滤波算法估计变速器输出轴转矩,将其作为道路坡度和整车质量估计算法的输入。基于整车纵向动力学方程,采用改进型递推最小二乘法设计道路坡度和整车质量实时估计算法。仿真和实车试验结果表明,开发的估计算法能在不增加传感器的前提下实现较为准确的道路坡度和整车质量估计。  相似文献   

3.
基于加速度区间判断的坡道识别方法   总被引:2,自引:0,他引:2  
介绍了坡道识别的原理;在功率谱分析的基础上,设计了纵向加速度滤波算法,通过比较汽车在坡道上行驶时用加速度传感器测得的加速度数值与汽车纵向速度经差分后获得的加速度数值之间的差异,进行了基于加速度区间判断的坡道识别方法研究;完成了水平道路的加速度比较试验和坡道识别的实车试验,并在此基础上进行了基于坡道识别的换挡规律设计。实车试验结果表明:该方法能够进行坡道识别,并具有简单、实用、高效的优点;这种基于行驶环境识别的控制是未来汽车控制技术发展的方向。  相似文献   

4.
通过理论分析、实车道路试验、加载或减载的模拟试验方法,研究了集装箱运输车在不同坡道上行驶时的燃油经济性,以作为客观评价在集装箱堆场最大允许纵坡道路条件下集装箱运输车经济性的指标。结果表明道路纵坡度的增加对汽车上坡时的油耗量影响很大,且载荷越大,影响越大。  相似文献   

5.
载荷谱是当前道路模拟试验研究的重点。针对传统实车路谱数据采集及全虚拟仿真的局限性,文章提出了基于数字路面、轮胎模型、台架、试验车等的混合试验方法,研究了混合试验系统建模及迭代方法,并据此开展实车试验,最后对混合试验与实车道路试验轮心载荷进行了相关性分析。结果表明,该方法与实车道路试验具有较好的一致性,可大幅提前整车结构耐久性评估的节点,为压缩项目开发周期提供了有效手段。  相似文献   

6.
针对载货汽车质量辨识问题,设计了一种基于后悬架扰度的质量辨识算法。建立了基于后悬架扰度的质量辨识模型,分析了质心位置变化和坡道角度测量误差对汽车质量辨识的影响。通过建立货厢模型,制定不同类型货物的质量分布规则,模拟出不同载货种类和质量下质心分布情况,得到质心距前轴距离与载货质量之间的关系,提出了汽车质量辨识迭代算法。实车试验表明,所设计的汽车质量辨识算法能够有效估计整车质量,受货物种类和摆放位置的影响小。  相似文献   

7.
为了满足整车道路模拟试验对载荷谱的需求,本文介绍实车动态载荷谱采集、处理、分析和特征提取的方法,为进行实验室整车道路模拟试验以及CAE仿真分析奠定基础。  相似文献   

8.
在上下坡路段行驶的过程中,道路的坡度角对车辆的纵向受力分析非常重要。道路坡度角过大时会影响驾驶员驾驶的安全性,因此在道路建设中,上下坡路段的研究是有重要意义的。为了更加精确地对汽车在各种路段下的行驶状况进行研究,道路坡度是重要的研究指标。据此,提出了强跟踪滤波优化卡尔曼滤波算法,并利用MATLAB/Simulink仿真,验证了优化后的卡尔曼滤波算法具有很强的跟踪性和准确性。  相似文献   

9.
车辆在长下坡路段行驶过程中,道路纵向坡度对汽车纵向受力分析时尤为重要,当道路坡度过大会时会影响汽车的行驶安全性。然而道路纵向坡度很难通过传感器直接测量获得,实时获取道路纵向坡度可以为优化车辆长大下坡提供依据,文章提出基于自适应扩展卡尔曼滤波算法实时估计道路纵向坡度,并进行仿真试验,结果表明,此方法有很强的准确性和实时性。  相似文献   

10.
基于位移反求法,研究了汽车载荷谱的获取与处理方法。以某轻型车为试验对象,介绍了试验的数据采集系统、传感器及采集路线,对道路行驶载荷的预处理以及基于雨流计数法的载荷谱的压缩与外推进行了阐述。通过道路行驶载荷迭代处理,得到了多体动力学模型的输入载荷。  相似文献   

11.
开展车辆制动时路面类型识别的研究,提出一种基于主成分分析-学习向量量化神经网络 (Principal Component Analysis - Learning Vector Quantization,PCA-LVQ) 的制动工况路面识别方法。利用主成分分析对多维度驾驶数据降维处理,提取能表征路面特征的主要成分,采用学习向量量化神经网络对降维处理后的驾驶数据进行训练,并用于路面特征分类,使用制动工况下实车试验数据和硬件在环仿真数据进行验证。结果表明,所提出的 PCA-LVQ算法能准确识别路面类型特征,路面识别的精度达到 97%,与传统 BP神经网络的路面类型特征识别精度提升 7%;同时,在不同车速下,基于PCA-LVQ算法也能较准确地识别路面类型特征。  相似文献   

12.
液罐汽车横向稳定性的研究   总被引:1,自引:0,他引:1  
对液罐车非满载工况下在水平道路上转弯行驶以及在侧坡道路上直线行驶和转弯行驶时的液体质心坐标和横向稳定性进行了分析研究。在水平道路上转弯行驶时,质心的转移及侧倾程度主要与转弯半径,车速等有关;在侧坡道路上直线行驶时,质心的转移及侧倾程度主要与坡道的角度有关,在侧坡上转弯行驶时,质心的转移及侧倾程度除与侧坡角度有关外,还与转弯半径和车速等有关。为了减少液体质心的转移对汽车横向稳定性的影响,可在罐内增加纵向隔板,来抑制液体质心的转移。  相似文献   

13.
为解决智能汽车在含有纵向坡路的环境中行驶时所涉及的环境感知与路面可行驶性理解问题,提出了一种基于激光雷达的动态、不确定性路面可行驶性预测方法。首先,利用PreScan,CarSim与MATLAB软件搭建虚拟行驶环境,并建立激光雷达物理模型提高虚拟点云的保真度。其次,进行基于激光雷达的动态可行驶性研究,利用路面激光雷达点云数据基于车辆未来行驶方向建立笛卡尔坐标系下的间隔栅格地图;在间隔内进行平面拟合得到路面的法向量,利用平面法向量计算路面纵向坡角并利用车辆姿态补偿得到大地坐标系下的间隔坡角和道路轮廓信息,并探讨天气对道路轮廓估计结果的影响;基于车辆纵向动力学特性和道路参数估计结果,计算可行驶性概率并预测可行驶性。为了快速仿真验证所提出的可行驶性预测方法,搭建相应的自动测试环境并设计测试方法。首先分析并测试车辆行驶过程中容易因失效造成预测失败的临界关键工况,接着在虚拟行驶环境中建立自动化测试流程,加强对关键工况区的采样,总计通过402组测试工况验证可行驶性预测算法,预测准确率达到87.81%。最后,在实车平台和真实测试道路上对算法流程进行验证。研究结果表明:该方法能够很好地对车辆在纵向坡路上的可行驶性进行动态的、基于概率性指标的预测。  相似文献   

14.
在山路和平路上,进行了不同载荷下国V柴油车的实际道路行驶排放(RDE)试验。采集车速、海拔、氮氧化物(NOx)和颗粒物数量(PN)排放浓度等数据,分析了道路坡度、车辆载荷与输出功率对排放的影响。研究发现:测试柴油车辆,在平均坡度约6%山路行驶时NOx排放因子高于平路20%以上,PN低于平路20%以上。道路坡度自0增大到8%,NOx排放浓度升高1倍以上,PN排放浓度升高20%~60%;坡度进一步增大,NOx与PN排放浓度上升变缓,继而下降。载荷增大,NOx与PN排放浓度升高;NOx、PN排放速率在10~40 kW功率区较大;NOx与PN高排放速率区随载荷增大变宽。该成果可为RDE测试车辆运行条件的设置提供参考。  相似文献   

15.
针对前轮独立驱动电动汽车,研究一种基于小波控制器的驱动稳定性控制系统。为提高车辆对开路面的行驶稳定性,根据驱动轮等转矩分配控制策略,提出基于神经网络PID的驱动轮滑移率相近为目标控制策略。针对矢量控制中的电流控制,提出基于离散小波变换的电流控制器。通过CarSim/Simulink建立前轮独立驱动电动汽车联合仿真平台,进行不同工况整车性能仿真与分析,并基于A&D5435快速原型开发平台进行实车试验。仿真与试验结果表明:基于小波控制器的驱动控制系统不仅提高了车辆对开路面行驶的稳定性,而且具有更平滑、更快速的转矩响应;对开路面工况下,提出的控制策略左侧、右侧驱动轮速度仿真结果与试验结果最大偏差分别为3.43%和3.56%;等转矩分配控制策略下,左侧、右侧驱动轮速度仿真结果与试验结果最大偏差分别为3.86%和3.25%,表明了试验与仿真的一致性;对开路面仿真工况下,相比于驱动轮等转矩分配控制策略,基于神经网络PID的驱动轮滑移率相近为目标控制策略的车辆峰值质心侧偏角降低了79.57%,侧向跑偏距离降低了73.39%。  相似文献   

16.
王乾廷  周晓军 《汽车工程》2006,28(12):1066-1069
为了在越野行驶车辆平顺性仿真系统中实时动态反映车辆的振动特性,提出了基于小波变换的松软越野路面突变性描述方法并分析突变性对车辆垂向振动的影响。通过小波变换对路面奇异点进行测定和定位,把越野车辆平顺性仿真系统看作是在有限时间内受到随机载荷激励的动力系统,分析其受路面突变载荷的车辆的垂直振动响应方差。结果表明,小波变换能较准确地判定路面奇异点并对其定位,可为越野车辆平顺性虚拟测试系统提供路面随机输入。  相似文献   

17.
目标载荷是有效开展车辆可靠性评估与寿命预测的基础。车辆行驶过程中,由于驾驶行为、路面起伏、载重状态等因素的不断变化,不同用户电驱动系统载荷差异巨大,如何构建覆盖一定用户百分位水平的电驱动系统可靠性目标载荷,是当前产品高质量开发面临的共性问题。以用户历史运行数据为基础,结合整车动力学仿真和参数优化,提出了一种电驱动系统可靠性目标载荷快速构建方法。针对车辆行驶过程中道路坡度与整车质量参数数据难以精确获取、不同用户数据差异大的现实,通过等效坡度和等效质量的参数优化,提高电驱动系统载荷仿真精度;针对不同用户间等效坡度和等效质量差异,以95%用户损伤水平为目标,通过多目标优化得到群体用户模型参数的等效统一解;基于整车动力学仿真与实际用户载荷时域及损伤域对比,验证电驱系统可靠性目标载荷的有效性。结果表明,基于得到的统一参数仿真载荷与95百分位用户损伤误差仅为1.09%,为有效开展电驱动系统可靠性评估提供技术支持,为整车及其它系统可靠性目标载荷构建提供参考。  相似文献   

18.
为有效解决复杂行驶工况下车辆耦合侧倾运动状态无法精确获取,进而对车辆系统操纵稳定性与乘坐舒适性兼顾优化无法提供准确输入的难题,本文中设计了基于车辆垂向与横向耦合动力学的双非线性状态观测器算法,以实现复杂行驶工况下车辆耦合侧倾运动状态的实时准确估计。首先,建立了路面激励模型与整车系统垂向与横向耦合动力学模型;接着,利用无迹卡尔曼滤波方法(UKF)与非线性模糊观测(T-S)理论,设计了非线性状态观测算法,以在不同路面激励工况下对车辆系统簧载质量与侧倾状态进行联合估计;最后,运用CarSim■动力学软件,对比分析了在标准A级与C级路面上进行J-turn试验工况下,采用联合状态观测器(UKF&T-S)实时估计车辆侧倾角与侧倾率的观测精度。结果表明,本文所设计的UKF&T-S观测器可有效估计车辆侧倾状态,且与CarSim■仿真数据相比识别状态标准偏差不超过10%。  相似文献   

19.
车辆结构参数和道路环境信息的实时准确获取是提高智能汽车运动控制性能的重要因素之一,而车辆质量与道路坡度信息是多种汽车控制系统的必要信息,因此质量与坡度在线估计的研究一直受到关注。针对车辆质量与道路坡度的联合估计问题,提出了一种基于交互多模型的质量与坡度融合估计方法。首先,设定了适宜进行质量精确估计的工况条件,据此提出了基于模糊规则的质量估计置信度因子计算算法,进而设计了基于置信度因子的递推最小二乘车辆质量估计算法,以实现质量的在线估计。然后,以车辆纵向动力学模型为基础,建立了运动学和动力学2种坡度估计模型,并设计了基于运动学模型的线性卡尔曼滤波坡度观测器,基于电子稳定性程序ESP的纵向加速度信息实现坡度估计,设计了基于动力学模型的无迹卡尔曼滤波坡度观测器,基于ESP和发动机管理系统EMS的力信息实现坡度估计。运动学模型未考虑车辆姿态信息,坡度估算结果与实际值有偏差;动力学模型对模型精度要求高,算法稳定性差,为充分发挥2种方法优势实现坡度的精确估计,采用交互多模型算法实现了2种坡度估计方法的加权融合。最后,对所设计的算法进行了实车试验验证。结果表明:所设计的质量与坡度估算算法具有较好的实时性和准确性,适合智能汽车运动控制的应用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号