首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Pollution-Routing Problem   总被引:1,自引:0,他引:1  
The amount of pollution emitted by a vehicle depends on its load and speed, among other factors. This paper presents the Pollution-Routing Problem (PRP), an extension of the classical Vehicle Routing Problem (VRP) with a broader and more comprehensive objective function that accounts not just for the travel distance, but also for the amount of greenhouse emissions, fuel, travel times and their costs. Mathematical models are described for the PRP with or without time windows and computational experiments are performed on realistic instances. The paper sheds light on the tradeoffs between various parameters such as vehicle load, speed and total cost, and offers insight on economies of ‘environmental-friendly’ vehicle routing. The results suggest that, contrary to the VRP, the PRP is significantly more difficult to solve to optimality but has the potential of yielding savings in total cost.  相似文献   

2.
The vehicle routing problem (VRP) is a critical and vital problem in logistics for the design of an effective and efficient transportation network, within which the capacitated vehicle routing problem (CVRP) has been widely studied for several decades due to the practical relevance of logistics operation. However, CVRP with the objectives of minimizing the overall traveling distance or the traveling time cannot meet the latest requirements of green logistics, which concern more about the influence on the environment. This paper studies CVRP from an environmental perspective and introduces a new model called environmental vehicle routing problem (EVRP) with the aim of reducing the adverse effect on the environment caused by the routing of vehicles. In this research, the environmental influence is measured through the amount of the emission carbon dioxide, which is a widely acknowledged criteria and accounts for the major influence on environment. A hybrid artificial bee colony algorithm (ABC) is designed to solve the EVRP model, and the performance of the hybrid algorithm is evaluated through comparing with well-known CVRP instances. The computational results from numerical experiments suggest that the hybrid ABC algorithm outperforms the original ABC algorithm by 5% on average. The transformation from CVRP to EVRP can be recognized through the differentiation of their corresponding optimal solutions, which provides practical insights for operation management in green logistics.  相似文献   

3.
Temperature-controlled transport is needed to maintain the quality of products such as fresh and frozen foods and pharmaceuticals. Road transportation is responsible for a considerable part of global emissions. Temperature-controlled transportation exhausts even more emissions than ambient temperature transport because of the extra fuel requirements for cooling and because of leakage of refrigerant. The transportation sector is under pressure to improve both its environmental and economic performance. To explore opportunities to reach this goal, the Load-Dependent Vehicle Routing Problem (LDVRP) model has been developed to optimize routing decisions taking into account fuel consumption and emissions related to the load of the vehicle. However, this model does not take refrigeration related emissions into account. We therefore propose an extension of the LDVRP model to optimize routing decisions and to account for refrigeration emissions in temperature-controlled transportation systems. This extended LDVRP model is applied in a case study in the Dutch frozen food industry. We show that taking the emissions caused by refrigeration in road transportation can result in different optimal routes and speeds compared with the LDVRP model and the standard Vehicle Routing Problem model. Moreover, taking the emissions caused by refrigeration into account improves the estimation of emissions related to temperature-controlled transportation. This model can help to reduce emissions of temperature-controlled road transportation.  相似文献   

4.
This paper introduces the fleet size and mix pollution-routing problem which extends the pollution-routing problem by considering a heterogeneous vehicle fleet. The main objective is to minimize the sum of vehicle fixed costs and routing cost, where the latter can be defined with respect to the cost of fuel and CO2 emissions, and driver cost. Solving this problem poses several methodological challenges. To this end, we have developed a powerful metaheuristic which was successfully applied to a large pool of realistic benchmark instances. Several analyses were conducted to shed light on the trade-offs between various performance indicators, including capacity utilization, fuel and emissions and costs pertaining to vehicle acquisition, fuel consumption and drivers. The analyses also quantify the benefits of using a heterogeneous fleet over a homogeneous one.  相似文献   

5.
This paper presents a novel Adaptive Memory Programming (AMP) solution approach for the Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW). The FSMVRPTW seeks to design a set of depot returning vehicle routes to service a set of customers with known demands, for a heterogeneous fleet of vehicles with different capacities and fixed costs. Each customer is serviced only once by exactly one vehicle, within fixed time intervals that represent the earliest and latest times during the day that service can take place. The objective is to minimize the total transportation costs, or similarly to determine the optimal fleet composition and dimension following least cost vehicle routes. The proposed method utilizes the basic concept of an AMP solution framework equipped with a probabilistic semi-parallel construction heuristic, a novel solution re-construction mechanism, an innovative Iterated Tabu Search algorithm tuned for intensification local search and frequency-based long term memory structures. Computational experiments on well-known benchmark data sets illustrate the efficiency and effectiveness of the proposed method. Compared to the current state-of-the-art, the proposed method improves the best reported cumulative and mean results over most problem instances with reasonable computational requirements.  相似文献   

6.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment.  相似文献   

7.
This study introduces a new practical variant of the combined routing and loading problem called the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints (3L-FCVRP). It presents a meta-heuristic algorithm for solving the problem. The aim is to design routes for a fleet of homogeneous vehicles that will serve all customers, whose demands are formed by a set of three-dimensional, rectangular, weighted items. Unlike the well-studied capacitated vehicle routing problem with 3D loading constraints (3L-CVRP), the objective of the 3L-FCVRP is to minimize total fuel consumption rather than travel distance. The fuel consumption rate is assumed to be proportionate to the total weight of the vehicle. A route is feasible only if a feasible loading plan to load the demanded items into the vehicle exists and the loading plan must satisfy a set of practical constraints.To solve this problem, the evolutionary local search (ELS) framework incorporating the recombination method is used to explore the solution space, and a new heuristic based on open space is used to examine the feasibility of the solutions. In addition, two special data structures, Trie and Fibonacci heap, are adopted to speed up the procedure. To verify the effectiveness of our approach, we first test the ELS on the 3L-CVRP, which can be seen as a special case of the 3L-FCVRP. The results demonstrate that on average ELS outperforms all of the existing approaches and improves the best-known solutions for most instances. Then, we generate data for 3L-FCVRP and report the detailed results of the ELS for future comparisons.  相似文献   

8.
This paper investigates the combined impact of depot location, fleet composition and routing decisions on vehicle emissions in city logistics. We consider a city in which goods need to be delivered from a depot to customers located in nested zones characterized by different speed limits. The objective is to minimize the total depot, vehicle and routing cost, where the latter can be defined with respect to the cost of fuel consumption and CO2 emissions. A new powerful adaptive large neighborhood search metaheuristic is developed and successfully applied to a large pool of new benchmark instances. Extensive analyses are performed to empirically assess the effect of various problem parameters, such as depot cost and location, customer distribution and heterogeneous vehicles on key performance indicators, including fuel consumption, emissions and operational costs. Several managerial insights are presented.  相似文献   

9.
This paper introduces a fleet size and mix dial-a-ride problem with multiple passenger types and a heterogeneous fleet of reconfigurable vehicles. In this new variant of the dial-a-ride problem, en-route modifications of the vehicle’s inner configuration are allowed. The main consequence is that the vehicle capacity is defined by a set of configurations and the choice of vehicle configuration is associated with binary decision variables.The problem is modeled as a mixed-integer program derived from the model of the heterogeneous dial-a-ride problem. Vehicle reconfiguration is a lever to efficiently reduce transportation costs, but the number of passengers and vehicle fleet setting make this problem intractable for exact solution methods. A large neighborhood search metaheuristic combined with a set covering component with a reactive mechanism to automatically adjust its parameters is therefore proposed. The resulting framework is evaluated against benchmarks from the literature, used for similar routing problems. It is also applied to a real case, in the context of the transportation of disabled children from their home to medical centers in the city of Lyon, France.  相似文献   

10.
This paper presents a vehicle routing approach for the transport of end-of-life consumer electronic goods for recycling in South Korea. The objective is to minimize the distance of transportation of end-of-life goods collected by local authorities and major manufacturers’ distribution centers to four regional recycling centers located. A vehicle routing problem is constructed for each regional center, and a Tabu search is applied to solve it. Computational results using field data show that the method outperforms existing approaches to reverse logistics.  相似文献   

11.
Weather conditions have a strong effect on the operation of vessels and unavoidably influence total time at sea and associated transportation costs. The velocity and direction of the wind in particular may considerably affect travel speed of vessels and therefore the reliability of scheduled maritime services. This paper considers weather effects in containership routing; a stochastic model is developed for determining optimal routes for a homogeneous fleet performing pick-ups and deliveries of containers between a hub and several spoke ports, while incorporating travel time uncertainties attributed to the weather. The problem is originally formulated as a chance-constrained variant of the vehicle routing problem with simultaneous pick-ups and deliveries and time constraints and solved using a genetic algorithm. The model is implemented to a network of island ports of the Aegean Sea. Results on the application of algorithm reveal that a small fleet is sufficient enough to serve network’s islands, under the influence of minor delays. A sensitivity analysis based on alternative scenarios in the problem’s parameters, leads to encouraging conclusions with respect to the efficiency and robustness of the algorithm.  相似文献   

12.
We investigate the problem of designing an optimal annual delivery plan for Liquefied Natural Gas (LNG). This problem requires determining the long-term cargo delivery dates and the assignment of vessels to the cargoes while accommodating several constraints, including berth availability, liquefaction terminal inventory, planned maintenance, and bunkering requirements. We describe a novel mixed-integer programming formulation that captures important industry requirements and constraints with the objective of minimizing the vessel fleet size. A peculiar property of the proposed formulation is that it includes a polynomial number of variables and constraints and is, in our experience, computationally tractable for large problem instances using a commercial solver. Extensive computational runs demonstrate the efficacy of the proposed model for real instances provided by a major energy company that involve up to 118 cargoes and a 373-day planning horizon.  相似文献   

13.
文章针对带时间窗约束的混合车辆路径问题的特点,建立了带时间窗的混合车辆路径问题的数学模型,并设计了变邻域禁忌搜索算法对该问题进行求解。通过标准算例测试及与现有文献计算结果的比较,验证了该算法的有效性。  相似文献   

14.
Vehicle routing problems (VRPs) whose typical objective is to minimise total travel costs over a tour have evolved over the years with objectives ranging from minimising travel times and distances to minimising pollution and fuel consumption. However, driver behaviour continues to be neglected while planning for vehicle routes. Factors such as traffic congestion levels, monotonous drives and fatigue have an impact on the behaviour of drivers, which in turn might affect their speed-choice and route-choice behaviours. The behaviour of drivers and their subsequent decision-making owing to these factors impact the revenue of transport companies and could lead to huge losses in extreme cases. There have been studies on the behaviour of drivers in isolation, without inclusion of the objectives and constraints of the traditional routing problem. This paper presents a review of existing models of VRP, planner behaviour models in the VRP context and driver behaviour models and provides a motivation to integrate these models in a stochastic traffic environment to produce practical, economic and driver-friendly logistics solutions. The paper provides valuable insights on the relevance of behavioural issues in logistics and highlights the modelling implications of incorporating planner and driver behaviour in the framework of routing problems.  相似文献   

15.
In certain fleet systems, the environmental impacts of operation are, to some extent, a controllable function of vehicle routing and scheduling decisions. However, little prior work has considered environmental impacts in fleet vehicle routing and scheduling optimization, in particular, where the impacts were assessed systematically utilizing life-cycle impact assessment methodologies such as those described by the Society of Environmental Chemistry and Toxicology. Here a methodology is presented for the joint optimization of cost, service, and life-cycle environmental consequences in vehicle routing and scheduling, which we develop for a demand-responsive (paratransit or dial-a-ride) transit system. We demonstrate through simulation that, as a result of our methodology, it is possible to reduce environmental impacts substantially, while increasing operating costs and service delays only slightly.  相似文献   

16.
The Time-Dependent Pollution-Routing Problem (TDPRP) consists of routing a fleet of vehicles in order to serve a set of customers and determining the speeds on each leg of the routes. The cost function includes emissions and driver costs, taking into account traffic congestion which, at peak periods, significantly restricts vehicle speeds and increases emissions. We describe an integer linear programming formulation of the TDPRP and provide illustrative examples to motivate the problem and give insights about the tradeoffs it involves. We also provide an analytical characterization of the optimal solutions for a single-arc version of the problem, identifying conditions under which it is optimal to wait idly at certain locations in order to avoid congestion and to reduce the cost of emissions. Building on these analytical results we describe a novel departure time and speed optimization algorithm for the cases when the route is fixed. Finally, using benchmark instances, we present results on the computational performance of the proposed formulation and on the speed optimization procedure.  相似文献   

17.
Abstract

This study focuses on the mode and route choices of a logistics company in a situation involving intercity transportation with networks of surface roads, highways and a railway. A method of transportation network analysis is applied to construct a logistics company mode and route choice models with the objective of minimizing total distribution and external costs. This study also assumes that the fleet number and vehicle capacities are given. Freight distributed from a distribution center to given retailers or consumers via surface road/highway links or via intermodal transportation involving surface road/highway links and a railway. In terms of model construction, this study first explores the routing and sequence of the retailers and consumers served by each vehicle. Second, the study internalizes the external cost of air pollution into the total distribution cost, to analyze the influences of external cost burdens on a logistics company mode and route choices from a user charge perspective. Finally, the study designs a heuristic algorithm for solving the above models, and illuminates the modeling process using a numerical example.  相似文献   

18.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   

19.
This paper presents a differential evolution algorithm (DEA) to solve a vehicle routing problem with backhauls and time windows (VRPBTW) and applied for a catering firm. VRPBTW is an extension of the vehicle routing problem, which includes capacity and time window constraints. In this problem, customers are divided into two subsets: linehaul and backhaul. Each vehicle starts from a depot and goods are delivered from the depot to the linehaul customers. Goods are subsequently brought back to the depot from the backhaul customers. The objective is to minimize the total distance that satisfies all of the constraints. The problem is formulated using mixed integer programming and solved using DEA. Proposed algorithm is tested with several benchmark problems to demonstrate effectiveness and efficiency of the algorithm and results show that our proposed algorithm can find superior solutions for most of the problems in comparison with the best known solutions. Hence, DEA was carried out for catering firm to minimize total transportation costs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The future of US transport energy requirements and emissions is uncertain. Transport policy research has explored a number of scenarios to better understand the future characteristics of US light-duty vehicles. Deterministic scenario analysis is, however, unable to identify the impact of uncertainty on the future US vehicle fleet emissions and energy use. Variables determining the future fleet emissions and fuel use are inherently uncertain and thus the shortfall in understanding the impact of uncertainty on the future of US transport needs to be addressed. This paper uses a stochastic technology and fleet assessment model to quantify the uncertainties in US vehicle fleet emissions and fuel use for a realistic yet ambitious pathway which results in about a 50% reduction in fleet GHG emissions in 2050. The results show the probability distribution of fleet emissions, fuel use, and energy consumption over time out to 2050. The expected value for the fleet fuel consumption is about 450 and 350 billion litres of gasoline equivalent with standard deviations of 40 and 80 in 2030 and 2050, respectively. The expected value for the fleet GHG emissions is about 1360 and 850 Mt CO2 equivalent with standard deviation of 130 and 230 in 2030 and 2050 respectively. The parameters that are major contributors to variations in emissions and fuel consumption are also identified and ranked through the uncertainty analysis. It is further shown that these major contributors change over time, and include parameters such as: vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel economy of the dominant naturally-aspirated spark ignition vehicles, and percentage of gasoline displaced by cellulosic ethanol. The findings in this paper demonstrate the importance of taking uncertainties into consideration when choosing amongst alternative fuel and emissions reduction pathways, in the light of their possible consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号