共查询到19条相似文献,搜索用时 50 毫秒
1.
《舰船科学技术》2021,43(18)
传统船舶动力定位控制算法,在动力输出参量耦合情况下,存在动力阈值系数定位误差过大的问题。导致后续控制变量周期变化不稳定,无法准确控制船舶全局动力输出。为了解决上述动力定位控制问题,提出模糊控制方法的水面船舶动力定位控制。基于模糊控制方法的广域性,对动力控制参量进行模型计算;根据模型完成对动力变量目标位置定位量的优化。最后,根据优化阈值利用模糊神经算法,完成对输出控制量策略的更新,实现提升动力定位控制精准度,减小控制误差的效果。通过与传统算法的效果对比表明:提出的控制方法,具有定位速度快、精度高、资源消耗小的特点,更适合实际船舶动力定位控制场景的应用。 相似文献
2.
按《船舶动力定位系统检验指南》的要求进行船舶动力定位性能试验,介绍试验中系统安装与运行可靠性验证、系统运行功效考核指标以及试验操作细节等。 相似文献
3.
4.
模糊控制技术在船舶动力定位中的应用研究 总被引:6,自引:0,他引:6
在进行某船动力定位系统的设计过程中,采用了模糊控制器作为系统的控制器,并针对仿真过程中出现的问题进行优化,得到了一个切实可行的模糊控制器,并对该模糊控制器进行了仿真试验验证。 相似文献
5.
船舶动力定位中的模糊控制器优化技术 总被引:1,自引:0,他引:1
动力定位系统是一种闭环控制系统,采用推力器来提供抵抗风、浪、流等作用在船上的环境力,从而尽可能使船舶保持在海平面要求的位置上。在传统模糊控制的基础上,将遗传算法引入模糊控制器的设计当中,根据已知的模糊控制规则,对模糊隶属度函数自动寻优,该方法用于船舶动力定位中,对船舶纵向运动进行控制与仿真,仿真结果证明遗传算法优化的有效性。 相似文献
6.
提出一种基于模糊积分预测控制器的船舶动力定位系统控制方法,通过引入积分控制器消除了稳态误差,采用模糊控制算法实现了对不确定系统的控制,利用预测控制解决了船舶动力定位中的约束问题,有效地减少了船舶动力定位系统能量的消耗。仿真结果证明,提出的模糊积分预测控制器在满足动力定位要求的同时,大大提高了推力系统的效率,减少了推力消耗。 相似文献
7.
8.
9.
在海洋资源开发中,船舶的动力定位精度至关重要。传统的定位锚泊技术受到海深、洋流、海浪以及海风等多种因素影响,难以达到控制要求。本文提出一种基于改进PID算法、神经网络算法以及模糊控制算法的船舶动力定位混合控制器,设计混合控制器的整体结构,对混合控制器中的改进PID算法控制器、神经网络控制器和模糊控制器进行详细设计和仿真。仿真结果表明,本文设计的船舶动力定位混合控制器能够实现对干扰信号的预测和跟随,且能够适应快速响应控制,因而具有较大的实用性和先进性。 相似文献
10.
11.
在现代船舶控制系统中,自动舵的运用给船舶的运输安全提供了重要的保证,但是由于自动舵系统具有非常复杂的时变和不确定性特征,传统的自动控制技术已经很难满足其要求,因此必须采用智能化的控制算法来实现自动舵系统的高效运行。本文通过建立精确的自动舵控制数学模型,结合模糊控制原理和滤波算法,实现了自动舵性能的提高。文中简要概述模糊控制的原理,给出了若干的仿真控制曲线,文末给出了自动舵的稳定性控制仿真曲线。 相似文献
12.
为了提高动力定位船舶或作业平台在复杂海况条件下的定位精度,对动力定位船舶的控制器进行设计研究,通过建立简化的船舶三自由度数学模型,采用滑模变结构控制方法进行控制器的设计,并基于李雅普诺夫函数进行稳定性分析,通过软件进行仿真验证,仿真结果表明,在存在外界环境干扰的条件下,所设计的滑模控制器能够较好的保持系统的稳定性和鲁棒性,控制性能良好,对进一步研究动力定位船舶的控制系统有一定的参考意义。 相似文献
13.
14.
15.
鉴于广义预测控制(GPC)方法能用同一方式处理设备和安全约束,且具有较强的抗扰动能力,提出了一种基于GPC的船舶动力定位约束控制器设计方法。运用前馈控制器克服风力扰动的影响,且所产生的前馈量被用来实时修正推力约束,在修正后的推力约束下滚动优化GPC。对承受风、浪、流扰动的某供应船,采用提出的方法设计控制器,并进行仿真验证。仿真结果表明,所设计的控制器抗扰动能力较强,能完成对船舶的动力定位约束控制。 相似文献
16.
根据建立的船舶横荡、纵荡和首摇3种自由度的低频运动模型,并结合模糊控制理论和经典PID控制方法,设计出基于船舰动态过程的PID参数模糊自整定控制器。经过Matlab仿真验证,所设计的智能控制器控制品质高,鲁棒性强,能对船舶进行有效定位。 相似文献
17.
在前向模糊神经网络的归一化层和输出层之间加入递归层,形成的一种新型动态模糊神经网络(DFNN)具有动态映射能力,从而对动态系统有更好的响应.文章还推导了基于BP的反传学习算法.运用DFNN对船舶动力定位控制进行的仿真实验结果证明了该方法的有效性. 相似文献
18.
19.
船舶和海上作业平台在海上特定位置工作时,必须具有较高的定位精度,锚泊式船舶定位受到锚链长度和锚钩抓地作用力的影响,在干扰作用力(海浪、海风和洋流等)作用下,定位精度不高。船舶的动力定位系统包括测量模块、动力分配模块、控制模块等,通过控制器分配船舶自身的动力,使干扰作用力和自身推进力相抵消,提高船舶或海上作业平台的定位精度。本文针对船舶的动力定位系统的定位原理,通过建立干扰力模型和船舶运动模型,设计了一种基于自适应模型控制技术的动力定位控制器。该控制器相对于传统控制器具有更高的控制精度和更短的效应时间,并在实际应用中取得了良好的效果。 相似文献