首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
张芊  赵柯 《船电技术》2013,33(1):8-10
介绍AMPCI-9110型数据采集卡在船舶操纵模拟器中的应用,重点是对模拟随动舵和模拟罗经的控制和数据采集,该方案对船艇操纵模拟器的研究具有一定的指导意义。  相似文献   

2.
王五桂 《船电技术》2016,36(3):60-62
根据船舶操纵模拟器功能实现的实际需要,本文提出一种7通道270°宽视场角环幕投影构架方案。基于视景仿真系统的建设目标,完成了硬件构架和软件构建的设计。并通过船舶操纵模拟器试验室空间的实际大小,完成构架方案的空间布局设计,并对布局设计进行光路效果分析。结果表明,所提出的视景系统构架方案能够满足船舶操纵模拟器真实沉浸感的要求。  相似文献   

3.
普通船舶实时监控系统,存在监控环境稳定性较差,实时联动船舶数据传输速率较慢等弊端。为有效解决上述问题,引入Linux原理,设计基于嵌入式技术的船舶实时监控系统。通过硬件框架设计、服务器接口设计,完成基于嵌入式技术船舶实时监控系统硬件设计。通过Linux内核设计、嵌入式监控环境设计、实时监控驱动程序设计,完成基于嵌入式技术船舶实时监控系统软件设计。模拟系统运行环境,设计对比实验结果表明,新型系统与传统系统相比,有效解决监控环境稳定性差、实时联动船舶数据传输速率慢等问题。  相似文献   

4.
张芊  赵柯 《机电设备》2012,29(3):64-66
介绍了一种基于C8051F020单片机的船舶操纵模拟训练系统中的随动舵设计,给出了该设计的实现技术和硬件结构,并进行了软件设计.该设计仿真效果好,测量精度高,简单可靠,并可推广至任何角度检测系统中.  相似文献   

5.
普通船舶导航信息处理系统,不能在最短时间完成导航信息分类处理,且极易发生船舶信息丢包现象。为解决上述问题,设计基于DSP技术的嵌入式数字船舶导航信息处理系统。通过DSP船舶导航图像处理硬件系统框架设计、信息同步子模块设计,完成系统硬件设计。通过导航信息系统嵌入式通信串口设计、多任务调度流程设计、通信协议设计,完成系统软件设计。模拟系统应用环境,设计对比实验结果表明,新型数字船舶导航信息处理系统,与普通系统相比,大幅缩短导航信息分类处理所需时间,降低船舶信息丢包现象发生几率。  相似文献   

6.
在传统船舶操纵模拟器的基础上,针对其目标船不具备自动避让它船能力的现状,提出了将液压伺服平台、六自由度船模、自动避碰成果等引入新型船舶操纵模拟器的研发中,自主研发了智能型船舶操纵模拟器.将整个船舶操纵模拟器系统抽象成3个相对独立的网络,提出了一种基于TCP的IOCP模型和基于UDP的阻塞模型相结合的通信网络架构,给出了系统的通信流程和通信协议.测试结果表明,这种解决方案较大地提高了船舶操纵模拟器的本船端容量,可以满足船舶操纵模拟器桌面系统的多本船端配置需求.  相似文献   

7.
随着航运业的发展,对船舶操纵性能的要求日益提高,需要对船舶航向控制问题进行进一步研究。提出基于物联网的嵌入式船舶航向控制系统的设计方法。所设计系统由两部分组成,分别为硬件部分和软件部分。硬件主要由芯片、无线通信模块、电源模块、显示模块、温度采集电路、信扫描电路、复位电路、声光报警电路和负载控制电路构成,重点阐述了对各个硬件部分的设计电路。根据控制信号判断的方法对软件部分进行设计,完成物联网下嵌入式船舶航向控制系统的设计。为了验证所提设计方法的有效性,进行仿真实验,根据实验结果可以得出该系统能够对船舶航向进行实时控制,抗干扰能力强,效果令人满意。  相似文献   

8.
镇江  胡定军张芊 《船艇》2007,(6B):18-20
介绍了采用CPLD技术开发船舶综合模拟器控制系统的设计思想和主要技术,包括了船舶操纵模拟器、航海仪器模拟器、轮机模拟器的硬件设计以及软件设计。[编者按]  相似文献   

9.
传统船舶舵机控制方法存在舵机随动性控制误差偏大的问题。为此,利用嵌入式技术设计一种新的船舶舵机随动控制方法。通过设计船舶舵机水下部分的随动误差量抽象模型,得到舵机运动控制过程中随动控制量的误差值,然后利用嵌入式神经网络对控制量的误差值进行修正,并通过嵌入式技术对修正函数进行驱动定义,保证修正参量的稳定。为了验证该方法的可行性,设计仿真实验进行对比性验证,并得出可行性结论。  相似文献   

10.
为避免船舶在海上航行时遭遇严重危害,设计基于嵌入式技术的船舶操作系统通用软件架构。通过嵌入式技术构建具备网络传输功能的服务端,并采用远程终端向嵌入式处理器发出控制指令,实现船舶操作系统远程控制;在远程终端中搭建包含嵌入式资源层、模块支持层、操作系统层以及应用层的分层通用软件架构,远程终端从嵌入式处理器中获取硬件资源数据,传输至模块支持层与操作系统层中依次进行存储与管理,并将处理后的数据传输至应用层进行控制。在应用层经PID航向控制器、舵角随动等控制后,传输至显示界面显示给操作人员,实现船舶操作控制。经实验验证:该系统可在恶劣海洋环境下精准实现船舶航线控制,规划最佳航行轨迹;还能够精准控制船舶航行速度,使船舶按照理想速度运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号