首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At non‐signalized mid‐block street crossings in China's cities, pedestrians often weave between motor vehicle flows. This paper investigated the influence patterns of the gender and age of pedestrians, the presence of a pedestrian group, vehicles' interference and the crossing direction on the crossing time at non‐signalized mid‐block street crossings in Changsha, China. The results show that the crossing speed is approximately 1–1.1 m/s; the crossing time increases with increasing age, and the crossing speed of a pedestrian will be quicker when the time gap between the pedestrian and the oncoming vehicle is smaller if he/she decides to cross. This paper also analyzed the crossing time pattern when pedestrians cross lane by lane and found that pedestrians spend the most time crossing the first lane and the least time crossing the middle lane, regardless of whether they are crossing from the curb to the central island or from the central island to the curb. The crossing speed is an important input to the design of pedestrian facilities, so these findings can be applied to the assessment of pedestrian crossing safety in China's cities and can provide a basis for the design of pedestrian crossing facilities. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Although several cities in India are developing the metro system, there are lacunas associated with transfer facilities in and around metro stations. The present work aims to investigate the perception of commuters of Kolkata city, India in terms of their willingness-to-pay (WTP) for improvement of transfer facilities. A stated preference survey instrument was designed to collect choice responses from metro commuters and the database was analysed by developing random parameter logit (RPL) models. The decomposition effects of various socioeconomic and trip characteristics on mean estimates were also investigated in random parameter logit models with heterogeneity. The work indicates significantly high WTP of metro commuters as compared to the average metro fare for improvement of various qualitative attributes of transfer facility such as ‘facility for level change’, ‘visual communication’, ‘pedestrian crossing’, and ‘pedestrian environment’. The WTP values are also found to vary across different groups of commuter formed on the basis of ‘trip purpose’, ‘monthly household income’, ‘station type’ and ‘metro fare’. ‘Work trip’ commuters are found to have higher WTP for improvement of access time, pedestrian environment and use of an escalator over the elevator. On the other hand, ‘high-income group’ commuters have shown higher WTP for improvement of access time, pedestrian crossing, and pedestrian environment. While ‘high fare group’ commuters have higher WTP for access time and pedestrian environment, heterogeneity is also observed in WTP for facility for level change, pedestrian crossing, and pedestrian environment across commuters using different ‘station type’ (underground, at-grade, and elevated). The findings from the study provide a basis for formulating policies for the improvement of transfer facilities in and around metro stations giving due attention to the preference of commuters having different socioeconomic and trip characteristics.  相似文献   

3.
Pedestrian travel offers a wide range of benefits to both individuals and society. Planners and public health officials alike have been promoting policies that improve the quality of the built environment for pedestrians: mixed land uses, interconnected street networks, sidewalks and other facilities. Whether such policies will prove effective remains open to debate. Two issues in particular need further attention. First, the impact of the built environment on pedestrian behavior may depend on the purpose of the trip, whether for utilitarian or recreational purposes. Second, the connection between the built environment and pedestrian behavior may be more a matter of residential location choice than of travel choice. This study aims to provide new evidence on both questions. Using 1368 respondents to a 1995 survey conducted in six neighborhoods in Austin, TX, two separate negative binomial models were estimated for the frequencies of strolling trips and pedestrian shopping trips within neighborhoods. We found that although residential self-selection impacts both types of trips, it is the most important factor explaining walking to a destination (i.e. for shopping). After accounting for self-selection, neighborhood characteristics (especially perceptions of these characteristics) impact strolling frequency, while characteristics of local commercial areas are important in facilitating shopping trips.  相似文献   

4.
This commentary argues for strategies to rapidly increase access by small, human-scaled modes in cities through changes to street designs. Such rapid transformations are necessary as part of responses to critical environmental, economic and public health challenges cities face. We explain that even though coordinated transport and land use planning is desirable, the built environment is mature and slow to change, while streets can and have changed in character and use frequently. This suggests that access to employment, amenities and services should be dramatically increased through reoriented street space toward human-scaled transport modes which will improve safety, reduce pollution, and save households and governments money. We then articulate the prospects of a new generation of accessibility research based on network evolution.  相似文献   

5.
Abstract

Each year more than 1000 pedestrians are injured in accidents on pedestrian crossings in Switzerland. The accidents often occur in darkness, twilight or poor visibility during rain at locations without sufficient public street lighting because vehicle drivers notice the pedestrian crossing too late or overlook it altogether. Pedestrian crossings can be made significantly easier for vehicle drivers to recognize at night and in poor visibility by means of HMB reflectors. When crossing sites are made more conspicuous with high horizontal retro‐reflecting markers, the readiness to stop increases. The reflectors can thus contribute to improving road safety at pedestrian crossings. This new low‐cost measure has a wide range of applications. The new reflector system is currently gaining ground in Switzerland and several other European countries.  相似文献   

6.
The hypothesis of this paper is that some features of the built environment, particularly those concerned with the accessibility of the street network, could be associated with the proportion of pedestrians on all trips (modal split) found in different parts of a city. Quantitative analysis (bi-variate correlation and a multiple regression model) was used to establish the association between variables. The study area covered a substantial part of the metropolitan area in Madrid, Spain. Results showed a consistent influence of five particular indexes in the multi-variate model. Not surprisingly for this kind of research, four of them described density and mix of land uses. But perhaps more interestingly, the first one was a measure of the accessibility of the public space network, a less prominent variable in literature to date. This variable is called herein configurational accessibility, calculated using Space Syntax, an urban morphology theory. The relevance of configurational accessibility is probably related to its surprising ability to synthesize global and perceived properties of street networks at the same time. The findings introduce the idea that the configuration of the urban grid can influence the proportion of pedestrians (as a part of total trips in any transport mode) who choose to walk on single-journey trips. The discussion links with the current debate about walkability indexes and the need of empirical support for the chosen variables and also with transport planning. Because the relevance of the street network’s role is not so easy to grasp, inputs from configurational theory and the pedestrian potential underlying this fact are also discussed at the end of the paper.  相似文献   

7.
The exclusive pedestrian phase (EPP) has been used in many countries to promote walking around downtown areas by increasing the ease and convenience of pedestrian crossing. However, its applicability has not been systematically demonstrated, especially when an intersection is operated in actuated mode. This paper presents an extensive simulation‐based analysis of the applicability of EPP as compared with a normal concurrent pedestrian‐phase pattern at an isolated intersection controlled by actuated logic. Actuated signal control logics for EPP‐actuated and conventional concurrent pedestrian phase‐actuated controls are developed. Both of these control logics consider pedestrian crossing demands and can adapt to changes in vehicle traffic to reduce vehicle delay as well. A simulation model of a two‐phase controlled intersection is built and calibrated based on field data using VISSIM (PTV Planung Transport Verkehr AG in Karlsruhe, Germany). Extensive analysis is conducted to reveal fully the applicable EPP domain in terms of vehicle traffic demand, pedestrian demand, vehicle turning ratio, and pedestrian diagonal crossing ratio. The results show that the performance and applicable domain of EPP are jointly determined by those five factors. EPP significantly outperforms concurrent pedestrian phase if the vehicle turning ratio is greater than 0.6 and the pedestrian diagonal crossing ratio is greater than 0.6. These results can help traffic engineers in choosing the appropriate pedestrian‐phase patterns at actuated signalized intersections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
For the purposes of both traffic-light control and the design of roadway layouts, it is important to understand pedestrian street-crossing behavior because it is not only crucial for improving pedestrian safety but also helps to optimize vehicle flow. This paper explores the mechanism of pedestrian street crossings during the red-man phase of traffic light signals and proposes a model for pedestrians’ waiting times at signalized intersections. We start from a simplified scenario for a particular pedestrian under specific traffic conditions. Then we take into account the interaction between vehicles and pedestrians via statistical unconditioning. We show that this in general leads to a U-shaped distribution of the pedestrians’ intended waiting time. This U-shaped distribution characterizes the nature of pedestrian street-crossing behavior, showing that in general there are a large proportion of pedestrians who cross the street immediately after arriving at the crossing point, and a large proportion of pedestrians who are willing to wait for the entire red-man phase. The U-shaped distribution is shown to reduce to a J-shaped or L-shaped distribution for certain traffic scenarios. The proposed statistical model was applied to analyze real field data.  相似文献   

9.
Abstract

This paper investigates pedestrians' traffic gap acceptance for mid-block street crossing in urban areas. A field survey was carried out at an uncontrolled mid-block location in Athens, Greece. Pedestrians' decisions and traffic conditions were videotaped in terms of the size of traffic gaps rejected or accepted, waiting times and crossing attempts and vehicle speeds. A lognormal regression model was developed to examine pedestrian gap acceptance. It was found that gap acceptance was better explained by the distance from the incoming vehicle, rather than its speed. Other significant effects included illegal parking, presence of other pedestrians and incoming vehicles’ size. A binary logistic regression model was developed to examine the effect of traffic gaps and other parameters on pedestrians' decisions to cross the street or not. The results reveal that this decision is affected by the distance from the incoming vehicles and the waiting times of pedestrians.  相似文献   

10.
In traffic-crowded metropolitan areas, such as Shanghai and Beijing in China, right-turn vehicles that operate with a permitted phase at signalized intersections are normally permitted to filter through large numbers of pedestrians and bicycles. To alleviate such conflicts and improve safety, traffic engineers in Shanghai introduced a prohibited–permitted right-turn operation, adding a subphase to the permitted phase in which right-turns are prohibited. Unfortunately, the prohibited subphase would reduce the capacity of right-turn movements when it prohibits right turns even if there are few pedestrians and bicycles crossing the street. This paper aims at quantifying the impact of both non-vehicular flows and the prohibited subphase on the right-turn capacity, and then proposes a strategy to determine appropriate prohibited–permitted right-turn operation that minimizes the capacity reduction caused by the prohibited subphase. To achieve this goal, we improved the pedestrian and bicycle adjustment factor described in the Highway Capacity Manual by taking into account: (1) the variety in space competition between pedestrians and bicycles, and (2) the effect of two conflict zones in each phase on right-turn operation. In addition, we revised the capacity estimation model in the Highway Capacity Manual, and developed a model based on bicycle/pedestrian volume fluctuation to describe the capacity reduction due to both non-vehicular flows and the prohibited subphase. Furthermore, we proposed a timing strategy for the onset and duration of appropriate prohibited subphase. When bicycle and pedestrian volumes are low, the actuated strategy turns to the permitted phase. When these volumes are moderate, the strategy turns to the prohibited–permitted operation. With the volumes increasing, the prohibited subphase onset advances and duration increases. In these two scenarios, the new strategy has higher right-turn capacity than the current pretimed prohibited–permitted operation. Unfortunately, when bicycle and pedestrian volumes are high, the strategy yields similar right-turn capacity. However, the new prohibited subphase has less potential vehicle–bicycle and vehicle–pedestrian conflicts.  相似文献   

11.
Collecting microscopic pedestrian behavior and characteristics data is important for optimizing the design of pedestrian facilities for safety, efficiency, and comfortability. This paper provides a framework for the automated classification of pedestrian attributes such as age and gender based on information extracted from their walking gait behavior. The framework extends earlier work on the automated analysis of gait parameters to include analysis of the gait acceleration data which can enable the quantification of the variability, rhythmic pattern and stability of pedestrian’s gait. In this framework, computer vision techniques are used for the automatic detection and tracking of pedestrians in an open environment resulting in pedestrian trajectories and the speed and acceleration dynamic profiles. A collection of gait features are then derived from those dynamic profiles and used for the classification of pedestrian attributes. The gait features include conventional gait parameters such as gait length and frequency and dynamic parameters related to gait variations and stability measures. Two different techniques are used for the classification: a supervised k-Nearest Neighbors (k-NN) algorithm and a newly developed semi-supervised spectral clustering. The classification framework is demonstrated with two case studies from Vancouver, British Columbia and Oakland, California. The results show the superiority of features sets including gait variations and stability measures over features relying only on conventional gait parameters. For gender, correct classification rates (CCR) of 80% and 94% were achieved for the Vancouver and Oakland case studies, respectively. The classification accuracy for gender was higher in the Oakland case which only considered pedestrians walking alone. Pedestrian age classification resulted in a CCR of 90% for the Oakland case study.  相似文献   

12.
The promotion of space sharing in order to raise the quality of community living and safety of street surroundings is increasingly accepted feature of modern urban design. In this context, the development of a shared space simulation tool is essential in helping determine whether particular shared space schemes are suitable alternatives to traditional street layouts. A simulation tool that enables urban designers to visualise pedestrians and cars trajectories, extract flow and density relation in a new shared space design, achieve solutions for optimal design features before implementation, and help getting the design closer to the system optimal. This paper presents a three-layered microscopic mathematical model which is capable of representing the behaviour of pedestrians and vehicles in shared space layouts and it is implemented in a traffic simulation tool. The top layer calculates route maps based on static obstacles in the environment. It plans the shortest path towards agents’ respective destinations by generating one or more intermediate targets. In the second layer, the Social Force Model (SFM) is modified and extended for mixed traffic to produce feasible trajectories. Since car movements are not as flexible as pedestrian movements, velocity angle constraints are included for cars. The conflicts described in the third layer are resolved by rule-based constraints for shared space users. An optimisation algorithm is applied to determine the interaction parameters of the force-based model for shared space users using empirical data. This new three-layer microscopic model can be used to simulate shared space environments and assess, for example, new street designs.  相似文献   

13.
This paper aims to explore the impact of built environment attributes in the scale of one quarter-mile buffers on individuals’ travel behaviors in the metropolitan of Shiraz, Iran. In order to develop this topic, the present research is developed through the analysis of a dataset collected from residents of 22 neighborhoods with variety of land use features. Using household survey on daily activities, this study investigates home-based work and non-work (HBW and HBN) trips. Structural equation models are utilized to examine the relationships between land use attributes and travel behavior while taking into account socio-economic characteristics as the residential self-selection. Results from models indicate that individuals residing in areas with high residential and job density, and shorter distance to sub-centers are more interested in using transit and non-motorized modes. Moreover, residents of neighborhoods with mixed land uses tend to travel less by car and more by transit and non-motorized modes to non-work destinations. Nevertheless, the influences of design measurements such as street density and internal connectivity are mixed in our models. Although higher internal connectivity leads to more transit and non-motorized trips in HBW model, the impacts of design measurements on individuals travel behavior in HBN model are significantly in contrast with research hypothesis. Our study also shows the importance of individuals’ self-selection impacts on travel behaviors; individuals with special socio-demographic attributes live in the neighborhoods with regard to their transportation patterns. The findings of this paper reveal that the effects of built environment attributes on travel behavior in origins of trips do not exactly correspond with the expected predictions, when it comes in practice in a various study context. This study displays the necessity of regarding local conditions of urban areas and the inherent differences between travel destinations in integrating land use and transportation planning.  相似文献   

14.
This study examines the connection between the built environment, perceived safety from crime and walking behaviour by conducting a travel survey in King County, Washington State, U.S. and employing a two-stage least squares model. We seek to answer two research questions: how does the built environment affect perceived safety from crime and walking behaviour; and how does one’s perception of safety from crime affect his/her walking behaviour. Our results show that the built environment is not only significantly related to walking behaviour, as previous research has identified, but also correlated with people’s perception of safety. In addition, a significant association between perceived safety from crime and walking behaviour is found, revealing possible indirect impacts of the built environment on walking. In specific, people living in neighborhoods with good accessibility and pedestrian facilities tend to perceive their neighborhoods safer while density has an opposite impact. Moreover, residents in safe and high-density areas are more likely to walk.  相似文献   

15.
Pedestrian scramble phasing is usually implemented to reduce pedestrian‐vehicle conflicts and therefore increase the safety of the intersection. However, to adequately determine the benefits of scramble phasing, it is necessary to understand how pedestrians react to such an unconventional design. This study investigates changes in pedestrian crossing behavior following the implementation of a scramble phase by examining the spatiotemporal gait parameters (step length and step frequency). This detailed microscopic‐level analysis provides insight into changes in pedestrian walking mechanisms as well as the effect of various pedestrian and intersection characteristics. The study uses video data collected at a scramble phase signalized intersection in Oakland, California. Gait parameters were found to be influenced by pedestrian gender, age, group size, crosswalk length, and pedestrian signal indications. Both average step length and walking speed were significantly higher for diagonally crossing pedestrians compared with pedestrians crossing on the conventional crosswalks. Pedestrians were found to have the tendency to increase their step length more than their step frequency to increase walking speed. It was also found that, compared with men, women generally increase their walking speed by increasing their step frequency more than step length. However, when in non‐compliance with signal indications, women increase their walking speed by increasing their step length more than step frequency. It was also found that older pedestrians do not significantly change their walking behavior when in non‐compliance with signal indications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In India pedestrians usually cross the road at mid-block crosswalks due to ease of access to their destination or the development of adjacent land use types such as shopping, business areas, school and residential areas. The behaviour of pedestrian will change with respect to different land use type and this change in behaviour of pedestrian further reflects change in perceived level of service (LOS). So, it is important to evaluate the quality of service of such crossing facilities with respect to different land-use type under mixed traffic conditions. In this framework, pedestrian perceived LOS were collected with respect to different land-use type such as shopping, residential and business areas. The ordered probit (OP) model was developed by using NLOGIT software package, with number of vehicles encountered, road crossing difficulty as well as safety considered as primary factors along with pedestrian individual factors (gender and age), land-use type and roadway geometry. From the model results, it has been concluded that perceived safety, crossing difficulty, land-use condition, number of vehicles encountered, median width and number of lanes have significant effect on pedestrian perceived LOS at unprotected (un-signalized) mid-block crosswalks in mixed traffic scenario. The inferences of these results highlights the importance of land use planning in designing a new set of pedestrian access facilities for unprotected mid-block crosswalks under mixed traffic conditions. Also the study results would be useful for evaluating pedestrian accessibility taking into account different land-use type and planning required degree of segregation with vehicular movement at unprotected mid-block crosswalk locations.  相似文献   

17.
This study examines how the built environment and weather conditions influence the use of walking as a mode of transport. The Halifax Regional Municipality in Nova Scotia, Canada is the study area for this work. Data are derived from three sources: a socio-demographic questionnaire and a GPS-enhanced prompted recall time-use diary collected between April 2007 and May 2008 as part of the Halifax Space-Time Activity Research project, a daily meteorological summary from Environment Canada, and a comprehensive GIS dataset from the regional municipality. Two binary logit multilevel models are estimated to examine how the propensity to use walking is influenced by the built environment and weather while controlling for socio-demographic characteristics. The built environment is measured via five attributes in one model and a walkability index (derived from the five attributes) in the other. Weather conditions are shown to affect walking use in both models. Although the walkability index is significant, the results demonstrate that this significance is driven by specific attributes of the built environment—in the case of this study, population density and to a lesser extent, pedestrian infrastructure.  相似文献   

18.
Waiting time in transit travel is often perceived negatively and high-amenity stops and stations are becoming increasingly popular as strategies for mitigating transit riders’ aversion to waiting. However, beyond recent evidence that realtime transit arrival information reduces perceived waiting time, there is limited empirical evidence as to which other specific station and stop amenities can effectively influence user perceptions of waiting time. To address this knowledge gap, the authors conducted a passenger survey and video-recorded waiting passengers at different types of transit stops and stations to investigate differences between survey-reported waiting time and video-recorded actual waiting time. Results from the survey and video observations show that the reported wait time on average is about 1.21 times longer than the observed wait time. Regression analysis was employed to explain the variation in riders’ reported waiting time as a function of their objectively observed waiting time, as well as station and stop amenities, weather, time of the day, personal demographics, and trip characteristics. Based on the regression results, most waits at stops with no amenities are perceived at least 1.3 times as long as they actually are. Basic amenities including benches and shelters significantly reduce perceived waiting times. Women waiting for more than 10 min in perceived insecure surroundings report waits as dramatically longer than they really are, and longer than do men in the same situation. The authors recommend a focus on providing basic amenities at stations and stops as broadly as possible in transit systems, and a particular focus on stops on low-frequency routes and in less safe areas for security measures.  相似文献   

19.
This study validates a recently developed agent-based pedestrian micro-simulation model in a crowded walking environment. The model is applied to simulate pedestrian movements at a major street in the downtown Vancouver area. The street was closed for traffic to allow people attending a social event to leave the area safely. The calibration of model parameters is conducted using a Genetic Algorithm that minimizes the error between simulated and actual trajectories, acquired by means of computer vision. Validation results confirm the accuracy of the simulated trajectories, as the average error between the actual and simulated trajectories is found to be 0.28?m, and the average error in walking speed is just 0.06 m/s. Furthermore, results show that the model is capable of reproducing the actual behavior of pedestrians during different interactions with high accuracy (more than 94% for most interactions).  相似文献   

20.
Yuen  Belinda  Chor  Chin Hoong 《Transportation》1998,25(3):225-242
A fair amount of literature pertaining to pedestrian streets has been produced but for the most part it is on the American and European developments. There has been surprisingly little published research on pedestrian street development in Asia. The purpose of this paper, therefore, is to examine pedestrian streets in Asia, using the city-state of Singapore as a case study. Since the mid-1980s, pedestrian streets have been adopted as a policy in the conservation and planning of Singapore's city centre. The resulting pedestrian streets came in many forms, from a single pedestrian-only street to a whole precinct of several streets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号