首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
自动驾驶集人工智能(AI)、大数据、5G、车路协同、高精度地图与定位等高新技术于一体,顺应汽车工业革命的电动化,智能化、网联化、共享化发展趋势,近年来得到高速发展。具备自动巡航、紧急自动刹车、车道偏离预警等先进辅助驾驶系统(ADAS)功能的低等级自动驾驶汽车实现车辆前装,得到大规模量产应用。具备有条件自动驾驶、高度自动驾驶、完全自动驾驶功能的高等级自动驾驶汽车已经开展道路测试验证,量产商用可期。  相似文献   

2.
《汽车维护与修理》2014,(2):102-102
TRW(天合)汽车控股公司宣布,其最新一代闭路控制型车道保持辅助技术首次量产,为欧洲两个车辆平台配套。车道保持辅助(LKA)协同电动助力转向系统,整合摄像传感器传递的数据,通过施加短促的反转向力矩,帮助避免驾驶者无意中偏离车道。TRW主动安全电子产品计划部的AndyWhydell先生介绍,车道保持辅助技术对增进道路安全有巨大潜力。美国国家公路交通安全署(NHTSA)2011年的数据显示,偏离车道导致了53%的道路死亡事故。据高速公路安全保险(放心保)协会(IIHS)估算,在美国,车道偏离警示和车道保持辅助系统每年能挽救7500多人的生命。  相似文献   

3.
基于ITS技术的汽车驾驶安全辅助系统   总被引:2,自引:0,他引:2  
基于ITS技术的汽车驾驶安全辅助系统是提高道路交通安全的有效手段,本文介绍了清华大学汽车安全与节能国家重点实验室在此领域的研究与开发工作。在研究行驶环境感知和信息融合、驾驶员特性和安全距离模型、车辆运动控制及系统集成等关键技术的基础上,研制了汽车驾驶安全辅助系统试验平台和试验样车,实现了行车前撞预警、安全车距保持、智能车道保持等功能,并完成了相关试验分析与评价,为进一步开展基于ITS的汽车主动安全辅助技术的研究以及汽车驾驶辅助系统的产业化奠定了基础。  相似文献   

4.
陈慧 《汽车与配件》2009,(27):14-16
转向系统的电子化为先进安全汽车、辅助驾驶系统和自主驾驶车辆提供了友好的人机界面和有效的转向执行机构,是汽车集成控制系统与智能汽车的重要组成部分。  相似文献   

5.
随着汽车电子的高速发展,辅助驾驶系统已经开始大量普及,并已经开始逐步下探到十万元左右的在售车型之中.辅助驾驶系统,主要是指随着智能化的应用,辅助驾驶员驾驶,系统自动执行部分动态驾驶任务,有效的降低驾驶员驾驶强度,提升驾驶品质.典型的如自适应巡航系统(ACC)、车道保持辅助系统(LKA)、自动紧急制动系统(AEB)和高速...  相似文献   

6.
分布式驱动电动汽车可控自由度高、响应速度快、底盘线控集成度高、车辆结构紧凑,是实现先进车辆动力学控制技术的最佳平台。线控转向系统、线控驱动/制动系统、线控悬架系统等线控系统,制动防抱死系统、车道保持系统、自适应巡航系统、变道辅助系统等不同等级的辅助驾驶系统的广泛使用,造成车辆底盘控制中出现冗余及冲突。分布式驱动结构形式为多线控系统及线控系统与辅助驾驶系统间的高效、协同控制带来了更大的可能。基于此,从集成控制策略架构、纵-横向动力学集成控制、横-垂向动力学集成控制、纵-垂向动力学集成控制、纵-横-垂向动力学集成控制、容错控制、分布式驱动智能电动汽车底盘动力学集成控制等方面重点阐述分布式驱动电动汽车底盘集成控制技术的最新进展。通过对文献分析总结可以看出:基于分层式控制架构的分布式驱动电动汽车动力学集成控制是当前研究重点;一体化集成控制目标、高级辅助驾驶系统与底盘控制系统深度融合及个性化集成控制等问题亟待解决。研究成果能为分布式驱动电动汽车底盘高性能集成控制技术发展提供参考。  相似文献   

7.
正随着汽车制造商朝着实现车辆自动驾驶的目标迈进,汽车正变得越来越先进。虽然自动驾驶汽车仍有很长的路要走,但驾驶辅助技术正日益普及,比如自适应巡航控制(ACC)与车道居中(LC)相结合,可帮助驾驶员保持稳定的速度、与前方车辆保持安全距离并使车辆保持在车道中  相似文献   

8.
文章阐述了电动助力转向(EPS)系统在新能源汽车上的应用,探讨了新能源汽车自动驾驶系统中的车道保持辅助系统(LKA)实现途径。首先,针对某品牌电动乘用车EPS建立了模型,制定了基于上层直线助力控制和下层模糊比例-积分-微分(PID)控制的常规助力控制模式;然后,建立二自由度车辆模型和车路误差模型,制定基于线性二次调节器(LQR)的控制策略,根据车辆状态通过角度将LKA与EPS进行交互,实现车辆的主动前轮转向控制。最后,利用MATLAB/Simulink与CarSim联合仿真平台进行仿真模拟验证,仿真结果显示,制定的控制策略能够精确地实现新能源汽车的常规助力和LKA主动转向的功能,可极大提高车辆的行驶安全性。  相似文献   

9.
先进驾驶辅助系统(Advanced Driving Assistance System,ADAS)是智能网联汽车(Intelligent and Connected Vehicle,ICV)现阶段发展的重要力量,文章详细列举分析了侧向驾驶辅助的发展现状,包括弯道速度预警、盲区监测、车门开启预警、变道碰撞预警、车道偏离预警以及车道保持辅助和交通拥堵辅助。并以市场和量产化为导向,分析技术趋势。  相似文献   

10.
行为决策系统在很大程度上反映了自动驾驶汽车的智能化水平,作为自动驾驶汽车的大脑,行为决策系统决定了自动驾驶车辆的可行性和安全性。文章基于行车效率与行车安全对高速自动驾驶汽车的智能决策进行了研究。通过引入能效函数与动态子区域监测系统,实时计算本车道与相邻车道的行车能效值以及本车与周边车辆的碰撞风险,并基于此确定最优驾驶策略,一定程度上提升了自动驾驶车辆的行车效率与安全。  相似文献   

11.
在科技高速发展与追求高效的当今社会,保证货运车辆行驶安全尤为重要,为了能够有效避免事故发生,在事故发生前给出提示预警至关重要。本文首先分析了组成货运车辆主动安全预警系统的高级驾驶辅助系统ADAS、司机驾驶行为预警系统DMS的组成以及关键技术。其次,定义主动安全预警系统能够预警的危险类型;通过整合ADAS、DMS系统获取的数据及视频结合主动安全预警算法,最终生成风险等级对应不同等级提醒驾驶员改正危险驾驶行为。最后阐述对货运主动安全预警系统的价值总结以及前景展望。  相似文献   

12.
先进驾驶辅助系统的发展现状和趋势   总被引:1,自引:0,他引:1  
简要介绍先进驾驶辅助系统的概念和组成架构,详细阐述夜视系统、主动巡航控制系统、电子稳定程序、随动转向前照灯、车道偏离报警、防碰撞技术、盲点辅助技术和泊车辅助技术的组成原理以及目前的应用情况,探讨先进驾驶辅助系统的发展前景。  相似文献   

13.
在设计车道偏离防止系统时,为充分利用差动制动控制和主动转向控制,同时兼顾车辆行驶的安全性与驾驶员驾驶自由,提出了一种双级预警的利用主动转向与差动制动协调控制的车道偏离防止策略。当车辆危险程度较低时仅采用差动制动控制,保证驾驶员对转向盘的控制;当车辆危险程度较高时,采用预测控制实现主动转向与差动制动系统的协调控制,使车辆能快速地回到车道中心线。选取跨道时间来设计车辆偏离预警算法,并根据车辆转向系统的响应分别设定预警阈值。为保证车辆的稳定性,采用模型预测控制算法添加合理的约束,设计差动制动控制和主动转向与差动制动协调控制器。仿真与硬件在环试验结果表明,所设计的基于主动转向与差动制动协调的车道偏离防止控制策略在保证车辆行驶安全性的前提下给予了驾驶员充分的驾驶自由。  相似文献   

14.
驾驶倾向性是汽车行驶过程中操控者情感偏好等特征的动态测度,是车辆安全驾驶辅助系统,特别是其碰撞预警系统中汽车驾驶人意图等心理、意识计算必须考虑的核心参数.以3车道场景为例,分析目标车位于不同车道时周边的交通态势(主要指车辆集群编组关系,重点以目标车位于中间车道为例),设计实验采集人、车、环境等相关动态信息,获取不同态势下驾驶倾向性特征数据,利用动态贝叶斯网络建立时变环境下驾驶倾向性动态辨识模型.实验验证表明,所建模型对驾驶人倾向性类型的辨识准确率可达到91%以上,能够适应多车道情况下驾驶人倾向性类型的动态识别,为以人为中心的个性化汽车主动安全系统的实现提供理论基础.  相似文献   

15.
卫东 《汽车与运动》2011,(10):20-21
在驾驶员监控下,汽车可在高速公路上实现最高时速达130km/h的半自动驾驶,这一成果展示了当今的驾驶辅助系统可以导向来来的全自动驾驶。  相似文献   

16.
长时间单调地驾驶容易造成司机注意力降低,甚至会出现大脑"走神",思想"开小差"的情况。欧洲的经验表明在所有单人车祸中大约14%是由于驾车偏出行驶车道引起的。车道保持辅助功能通过电脑控制的转向干预--自动修舵来修正车辆的行驶轨迹,以避免偏离车道的情况发生。  相似文献   

17.
智能汽车电子控制系统是在整车控制过程中非常重要的系统组成,在新能源汽车,尤其是纯电动汽车行业的地位尤其重要。在此控制系统中,主要是由整车控制器VCU、高级辅助驾驶系统ADAS、制动系统IBooster、转向控制系统EPS及中控系统组成。此项目以整车控制器VCU为主导,通过和ADAS的信息交互共同实现自动跟车ACC、紧急制动AEB、车道保持LKA、自动泊车辅助APA等功能。同时,此智能汽车电子控制系统具有车道偏离报警LDW、前碰撞预警FCW、后面防碰撞辅助报警RCTA、盲点监测BSD、并线辅助危险报警LCA功能。整车控制器VCU通过各个系统和本身传感器的信号得知车辆当前工况信息,智能控制车辆各个部件实现主动安全及满足驾驶者的驾驶体验要求。此控制系统在新能源汽车项目中也实现了利用电机制动能量回收,在车辆减速滑行和制动工况高效的把机械能转化成电能,增加车辆行驶里程,提高经济型。智能汽车电子控制系统也是汽车行业发展的必然结果,也是未来汽车电子发展的主要方向。  相似文献   

18.
近些年来,随着高级辅助驾驶系统(ADAS)在商用车领域的逐渐兴起,为实现车道保持辅助系统(LKAS)及无人驾驶等,对车辆的横摆运动控制要求也越来越高。文章基于模型预测控制(MPC)算法,设计了一种用于半挂牵引车循迹的车辆前轮转角控制算法。最后通过Trucksim与Matlab联合仿真,实现了不同车速下对双移线路径的良好循迹。  相似文献   

19.
汽车主动前轮转向与防抱死制动系统集成控制研究   总被引:1,自引:0,他引:1  
以车辆动力学软件Carsim和Matlab/Simulink为平台,分别建立了基于滑模变结构控制的主动前轮转向(AFS)和滑移率门限控制的防抱死制动系统(ABS)控制器模型,并将2种控制系统进行了集成,建立了联合仿真模型。仿真结果表明,在分离路面紧急制动工况下,通过将AFS与ABS进行集成控制,能够进一步提高ABS的制动效能,在保持车辆制动稳定性的同时缩短了制动距离。  相似文献   

20.
为提高港口场景自动驾驶车辆横向控制准确性,基于液压转向系统电磁阀的响应特性,提出了具有分段最优控制的转角闭环控制算法,实现了车辆单轴、双轴、蟹行转向功能,通过实车验证对设计的控制算法进行了功能和性能验证。结果表明,所提出的控制算法能够实现对液压转向系统转角信号快速、稳定跟踪,能够支撑港口自动驾驶车辆横向控制功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号