首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 58 毫秒
1.
CA砂浆是温度敏感性材料,温度变化及作用时间将直接影响其力学性能,从而影响到无砟轨道的耐久性和安全性。为研究温度作用天数对CRTSⅡ型CA砂浆抗压性能的影响,将CA砂浆放置于3种温度25、40、60℃中分别10、20、30 d,在常温中冷却6 h后采用GDS三轴仪对其进行单轴压缩试验,分析抗压强度、弹性模量和应力应变曲线的变化规律,并对其变化机理进行分析。结果表明:CA砂浆的单轴抗压强度随温度和放置天数的增长均呈线性增长,线性相关系数均在0.9以上;弹性模量随温度和放置天数的增长而增长;由于沥青高温中老化以及软化迁移,CA砂浆的应力应变曲线呈现脆性破坏特征,而且残余强度随放置温度的升高而降低。  相似文献   

2.
水泥乳化沥青砂浆(CA砂浆)作为一种黏弹性材料,其力学性能与温度有直接关系.本文利用可控环境温度力学试验机对13℃,20℃,27℃,34℃4种温度下不同水灰比和不同沥青水泥比的 CA 砂浆力学性能进行了试验研究,结果表明:CA砂浆的峰值应力和弹性模量随着温度升高而降低,且几乎均呈线性关系.  相似文献   

3.
随着我国高速铁路的持续建设和投入运营,CA砂浆充填层不断出现破坏,经调研发现,充填层的破坏多与水有关。将CRTSⅠ型CA砂浆浸泡在5、20、40℃和60℃的恒温清水中,当浸泡到7、28 d和90 d时,用万能试验机做单轴压缩试验,分析其力学性能变化和破坏机理。结果表明:随浸泡时间增加,CA砂浆的抗压强度和弹性模量均逐渐降低,并且在前28 d下降速度快,幅度大,原因归结于CA砂浆在前28 d吸水基本饱和,后期吸水较少;随浸泡温度的升高,浸泡7 d的CA砂浆,与浸泡28 d和90 d的相比,弹性模量表现出不同的变化规律,分析原因,在浸泡早期,硬化浆体中未水化水泥颗粒遇水继续水化起主要作用,随浸泡时间增长,水对沥青-水泥水化产物界面和沥青-砂界面黏结力的破坏发挥主导作用。  相似文献   

4.
CA砂浆配制的工艺试验研究   总被引:3,自引:3,他引:0  
研究板式无砟轨道CA砂浆的初始流动度、膨胀率和28 d抗压强度与用水量的关系,以及砂浆温度、铝粉用量和搅拌工艺等对CA砂浆性能的影响,该技术对CA砂浆的生产与施工质量控制有一定意义.  相似文献   

5.
CA砂浆强度主要影响因素的研究   总被引:10,自引:3,他引:7  
以CA砂浆28 d抗压强度(1.8~2.5 MPa)为考察指标,研究了水泥、沥青乳液、砂、外加水和引气剂的用量范围.结果表明,影响CA砂浆强度的主次因素依次为水泥、沥青乳液和砂的用量.文章介绍制备满足强度要求的CA砂浆,其水泥、沥青乳液和砂用量的最佳范围.  相似文献   

6.
研究了水对Ⅱ型CA砂浆常温和高温拌合性能的影响,并结合透射电镜TEM分析了水质影响CA砂浆流动性的作用机理.研究发现水中高价阳离子含量越高,不论常温还是高温CA砂浆的流动性都越差,且损失越快.由机理分析得知,由于水中的高价阳离子与阴离子乳化沥青颗粒周围的负离子发生反应,降低了乳化沥青的稳定性,加速其破乳.  相似文献   

7.
CA砂浆强度的影响因素及作用机理研究   总被引:1,自引:0,他引:1  
CA砂浆水泥含量越高、乳化沥青含量越低、含气量越低、养护温度越高、养护湿度适当则CA砂浆的强度越高,同时乳化沥青种类也会对CA砂浆的强度造成影响。机理研究认为乳化沥青主要是通过包裹水泥颗粒,影响了水泥水化进程,以及沥青与水化产物或集料的黏度性或界面力,从而影响了CA砂浆的强度,然而不同乳化剂的影响程度不同,因此其砂浆强度不同。  相似文献   

8.
沥青乳液加料顺序影响CA砂浆早期强度的机理研究   总被引:4,自引:0,他引:4  
采用水化热-时间曲线和电阻率-时间曲线研究沥青乳液加料顺序引起CA砂浆早期强度不同的原因,研究结果表明,先加沥青乳液对水泥具有较强的缓凝作用,而后加沥青乳液的缓凝作用较弱,这是导致后加沥青乳液能显著提高CA砂浆早期强度的根本原因。  相似文献   

9.
为研究城市轨道交通地铁线路减振型无砟轨道的使用对CA砂浆力学性能的要求,基于有限元理论,建立减振型单元板式无砟轨道的梁-体模型。一方面,研究减振垫的刚度对CA砂浆的变形和受力影响;另一方面,研究CA砂浆自身的弹性模量对其本身变形和受力的影响。研究结果表明:由于减振垫自身刚度较小的缘故,导致CA砂浆承受较大拉应力而存在受拉破坏的危险,随减振垫刚度的减小,CA砂浆和上部结构均会出现较大变形,进而影响轨道平顺性和行车安全;随CA砂浆自身弹性模量的增大,CA砂浆层所受拉应力随之增大,因此在配制高弹性模量的CA砂浆材料的同时必须保证其抗拉强度能够满足CA砂浆抗拉的要求。  相似文献   

10.
结合沪宁城际、哈大客运专线、京沪高铁等高等级快速铁路施工,把原材料、配合比、搅拌工艺、新拌砂浆的性能、灌注工艺、施工环境条件、养护环境条件、相关工序质量控制等8个方面与CRTSⅠ型板式无砟轨道水泥乳化沥青砂浆的具体技术指标和揭板检查具体指标一一对应进行分析,使砂浆施工质量控制有据可循。在沪宁城际、哈大客运专线、京沪高铁CRTSⅠ型砂浆施工、咨询中总结出的相关经验保证了砂浆施工质量,并对相关病害的预防起到了指导作用,保证了线路的建造工期和建造质量,可供相关施工借鉴参考。  相似文献   

11.
就水泥乳化沥青砂浆的配合比的配置、调整、现场搅拌、施工等过程控制和施工工艺等方面在京沪高铁施工过程中的应用作了介绍,为水泥乳化沥青砂浆在今后高铁施工过程中提供参考。  相似文献   

12.
水泥乳化沥青砂浆主要承受列车垂向荷载,且处于动态加载过程。为研究CRTSⅠ型板式无砟轨道CA砂浆层的应变速率,基于车辆-轨道耦合动力学理论,采用ANSYS/LS-DYNA有限元软件建立列车-CRTSⅠ型板式无砟轨道-路基垂向耦合振动模型,研究CA砂浆层的应变速率及其影响因素。结果表明:路基上板式无砟轨道CA砂浆层的应变速率大于其他基础。随着CA砂浆层和列车速度的增加,CA砂浆层的应变速率增大。CRTSⅠ型板式无砟轨道CA砂浆层的应变速率在4.763×10-3/s~2.025×10-2/s范围内变化。与仿真得到的应变速率相比,规范规定的应变速率不能完全反映CA砂浆层的实际应变速率。  相似文献   

13.
高温作用后混凝土强度与变形试验研究   总被引:1,自引:0,他引:1  
对86个混凝土试块在常温~1000 ℃范围内温度作用后,进行了强度与变形试验和理论分析工作,主要包括混凝土抗压强度、抗拉强度、轴心抗压强度及弹性模量等几个方面.探讨了高温作用后混凝土强度和变形的变化规律,着重分析它们与作用温度的相互关系,并建立简明的数学表达式.  相似文献   

14.
水泥粉煤灰搅拌饱和黄土强度影响因素试验研究   总被引:1,自引:1,他引:1  
兰州至中川机场铁路工程沿线大多地段属于饱和黄土地基,承载力低,压缩性大,采取水泥土搅拌桩复合地基进行加固。对水泥粉煤灰搅拌饱和黄土强度特性进行试验研究。在不同的水泥和粉煤灰(以下简称"二灰")掺和比、不同的龄期、不同的水泥强度等级下,分析水泥土无侧限抗压强度的变化规律。试验结果表明:水泥土无侧限抗压强度随二灰掺量、龄期的增加而增大,二灰掺量为20%的水泥土无侧限抗压强度是二灰掺量为15%的1.42倍,是二灰掺量12%的1.9倍;当二灰总掺入量不变,粉煤灰掺入量占二灰比例为1/5、1/4、1/3时,水泥土强度略有降低;水泥土无侧限抗压强度随水泥强度等级的提高而显著增大,且随二灰掺量的增加,水泥土强度增加幅度增大。  相似文献   

15.
以高速铁路无砟轨道基床聚氨酯胶凝级配碎石联结层为研究对象,针对致密性聚氨酯级配碎石混合料的级配、强度、回弹模量开展试验研究。结果表明:聚氨酯级配碎石的毛体积密度随聚氨酯掺量的增加先增加后减少,而其孔隙率随着聚氨酯的掺量增加逐渐减少,当聚氨酯掺量为8%时,聚氨酯胶凝级配碎石能够达到不透水孔隙率1%~3%的控制指标;另外,随着聚氨酯胶水掺量的增加,混合料的强度和回弹模量得到提高,当达到8%的胶水掺量时,混合料强度和回弹模量趋于稳定,随着温度的增加,混合料的强度和回弹模量下降,且在不同的温度区间敏感度不同,但是远大于同等温度下的沥青混凝土强度;浸水48 h后,混合料强度下降,当掺量达到8%时,强度和回弹模量基本不变,且在不同温度区间下降趋势不同,抗压强度在低温(-30~0℃)和高温(60~80℃)变化幅度较小,而回弹模量在常温下(0~60℃)变化较小。  相似文献   

16.
水泥土受力性能试验研究   总被引:7,自引:1,他引:7  
针对深港西部通道工程中涉及的三种不良地层软土,选用两种水泥固化剂及多种特定的水泥添加剂,进行水泥土配比及室内无侧限抗压强度的试验研究。结果表明:水泥土无侧限抗压强度随着养护龄期及水泥掺量的增大而增大,并呈现很好的相关性,因此,可通过水泥土早期强度预测后期强度;采用硅酸盐水泥比普硅水泥加固效果更好,在相同掺入量的情况下,前者的90天强度比后者高出21%~44%;对本工程含有机质的软土,在掺加少量FDN-5等外加剂和15%的水泥后,水泥土强度大于1.2MPa,可以满足工程要求。  相似文献   

17.
砂灰比和砂的级配对CA砂浆抗压强度和流动性的影响   总被引:4,自引:0,他引:4  
通过调整砂与水泥的质量比和调整2种单级配砂的质量比,研究了砂灰比和砂的级配对CA砂浆的抗压强度和流动性的影响。结果表明:随着m(S)/m(C)的增大,低强和高强CA砂浆的流动性都变差,但低强CA砂浆流动性的变化幅度较小;随着m(S)/m(C)的增大,高强CA砂浆的抗压强度降低,而低强CA砂浆的抗压强度呈升高的趋势;使用两级配砂能够提高CA砂浆的抗压强度并改善其流动性,粒径为0.42-0.21mm的砂与粒径0.85-0.30mm的砂的最佳质量比为6:4。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号