首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
高速列车通过隧道时会带来乘客舒适性问题。现利用流入、流出相邻两节密封车厢的流量关系,发展了高速空调客车车厢在彼此隔离条件下车外压力引起的车内压力计算方法,模拟了客车在加装风量调节式控制系统时隧道单车压力波与会车压力波条件下的车内压力波动规律,验证了该类系统减缓车内压力的有效性。  相似文献   

2.
《机车电传动》2021,(3):80-85
当高速列车通过隧道时,隧道压力波通过车体变形、密封缝隙和换气风道引起车内压力变化,造成乘客不适。为探明由车体结构变形这单一因素引起的车内压力波动情况,构建了完全密封的车体结构和车厢结构模型,基于STAR-CCM+/Co-Simulations模块,仿真计算了高速列车以350 km/h的速度通过隧道时车体结构的振动位移情况、车内压力变化和车内压力变化率,并与气体状态方程理论数值模拟计算对比。结果表明,车门的振动位移最大;基于流固耦合理论和理想气体状态方程的2种数值模拟方法的结果误差为16.8%,相互验证了计算结果的可靠性;车内压力与车体内的容积成反比,车内最大负压为195.3 Pa,车内压力3 s变化率小于203.1 Pa/(3 s),车内压力1 s变化率小于149.6 Pa/s,满足舒适性要求,为建立多因素耦合作用下的车体模型研究提供帮助。  相似文献   

3.
高速列车过隧道时,会形成交变压力进而导致车厢内压力波动加剧,对旅客耳部舒适性产生严重影响。研究人员为了减缓车内压力波动,往往需要通过大量的实车试验获取车内压力变化规律,以确定列车过隧道时空调压力阀的开闭条件,但同时也导致了试验成本的急剧增加。因此,本研究旨在定量化建立各关键设计参数与车内压力波动幅值之间的联系,以节约相应的试验成本。首先,基于三维、非定常、可压缩的RANS方程与k-ε两方程湍流模型,采用数值计算方法揭示列车运行速度与隧道长度对车外压力波动的影响机制,并基于动模型试验验证了数值计算的可靠性。同时建立基于车体气密性指数的车内外压力理论转换计算方法,并基于实车试验验证了这一转换方法的准确性。最终,结合响应面法,提出以车内压力3 s变化率为响应值,以列车运行速度、隧道阻塞比和长度为设计变量的参数代理模型。基于这一模型,车辆技术人员通过输入列车速度、隧道阻塞比和长度等设计变量,即可得到车内压力变化幅值,为确定列车通过隧道时空调压力阀的开闭条件提供参考,从而节约试验成本。  相似文献   

4.
为研究高速列车通过高海拔、大坡度和特长隧道下压力波的特性,基于一维可压缩非定常不等熵流动模型的广义黎曼变量特征线法模拟列车通过隧道时的车外压力,采用时间常数法计算车内压力;分别利用国外数值模拟结果和国内西成高铁实车试验数据,验证方法的合理性和准确性;以速度200 km·h-1的单列8编组高速列车为研究对象,分析列车通过4种海拔、5种坡度和4种长度组成的不同隧道时,车内外压力波动和最值的变化规律。结果表明:隧道内初始压力是影响车内外压力幅值的根本原因;车内外最大正、负压均随隧道海拔的升高而线性减小,随隧道坡度和长度的增加而线性增大;与下坡相比,列车上坡运行时车内的压力舒适性更为恶劣、气密性要求更高;列车上、下坡通过坡度30‰、进口端海拔4 500 m、长42 km隧道时,车外最大正、负压分别为9.85和-9.63 kPa,列车动态气密时间常数不应小于1 713 s。  相似文献   

5.
地铁车辆通过隧道时引起的车内外压力波动会对司乘人员造成不适感或危害。文章通过线路试验方法研究了地铁车辆通过隧道时车外压力和车内压力的波动特性,分析隧道截面及车速变化对车内外压力的影响。试验结果表明:隧道截面变化会导致车内压力与车外压力的波动,且车辆通过通风井时会产生明显的压力波动;司机室头车两侧侧窗车外压力变化趋势相同,司机室车内压力幅值大于客室压力幅值;列车分别以80 km/h与90 km/h运行时,90 km/h速度下的车外压力幅值与车内压力幅值均大于80 km/h相对应的数值,且均发生在列车进入隧道时,隧道截面变化时与通过通风井时。  相似文献   

6.
采用国内研制的高速列车通过隧道时压力波计算程序,模拟了特定隧道条件下CRH3动车组单车隧道压力波的基本特性,给出了隧道内、车头车尾处的压力波分布情况,以及对应车内处3 s内最大压差值等随车速变化的规律。同时,比较了动车组在德国和我国隧道条件下压力波的异同点。  相似文献   

7.
计算高速列车车内压力的热力学模型   总被引:2,自引:0,他引:2  
张光鹏  雷波 《铁道学报》2006,28(1):35-38
运用热力学基础知识,建立了一种计算高速列车通过隧道时车内压力变化的热力学模型,它采用当量漏气面积表示车辆气密性,具有物理意义明确的特点。在相同的计算条件下,将其与现有能够计算车内压力的2种模型——经验模型和流动模型进行了车内压力计算的对比分析,结果表明热力学模型用于高速列车车内压力计算是可行的。  相似文献   

8.
武汉市轨道交通16号线列车为时速120 km的密闭性地铁快线列车,采用压力波保护阀。文章通过开展武汉市轨道交通16号线列车空气动力学现场试验,分析了列车车内外空气压力变化规律,并测试了压力波保护阀的执行效果,最后评估了列车运行时交变气压波动下的车内压力舒适度及动态密封指数。结果表明:列车通过变截面时车内压力变化幅值相比车外压力变化幅值减小40%~70%;列车运行过程中压力波保护阀执行到位;车内压力舒适度及列车动态密封指数均满足标准要求。  相似文献   

9.
为研究快速地铁列车在隧道内运行时的“列车-隧道”耦合空气动力特性,在杭海城际铁路开展实车试验,分别对列车以100 km/h与120 km/h的速度通过隧道时的车内外压力变化情况进行研究,计算压力峰-峰值、3 s压力变化幅值与1.7 s压力变化幅值,对比列车进隧道与出隧道过程中车内外压力变化情况,分析不同车辆编组位置与不同列车运行速度对车内外压力变化的影响,研究空调机组状态与车内压力变化幅值之间的关系。研究结果表明,快速地铁列车进出隧道过程中压力变化幅值相近;列车进入隧道并在隧道内运行时,尾车车内压力变化速率最快,车外压力峰-峰值从头车向尾车逐渐减小,而车内压力峰-峰值沿车长方向基本不变;当列车速度不同时,车内外压力对比应在无量纲时间下进行,随着列车速度的增大,车内外压力峰-峰值增大,压力变化速率加快;关闭空调机组可以显著减小车内压力变化速率,可为乘客舒适性研究提供参考。  相似文献   

10.
高速列车隧道压力波浅水槽模拟试验研究   总被引:2,自引:1,他引:1  
当高速列车进入隧道时,在列车前端的隧道空间引起空气的不稳定流动并形成压力波,压力波的形成可以通过自由表面水波运动的水波高度与可压缩流体运动压力的相似关系来模拟。本文介绍了自建的浅水槽模拟试验装置,并利用该装置研究了高速列车进入隧道时引起的压力波动。实验结果表明,压力波浅水槽模拟试验方法及其试验台的研制是成功的,测试结果可以用来校核复杂结构隧道压力波的数值计算。  相似文献   

11.
为解决列车车载类设备软件升级困难的问题,研究了基于USB的列车车载类设备软件升级技术,提出一种传输速度更快、稳定性更高、操作更方便的车载设备软件离线升级方法,该方法以IAP(In Application Programming)技术为基础,以处理器内部Flash为存储载体,利用基于USB通信协议设计的底包程序实现了设备的软件升级。该技术方法已应用于故障诊断等车载设备软件的升级,有效提高了软件升级效率。  相似文献   

12.
为清晰掌握动车组在极端温度和恶劣风环境下设备舱内沙尘的流向情况,采用列车空气动力学的数值计算方法,对不同恶劣风环境和高温条件下动车组设备舱内流场进行研究。通过对动车组设备舱内压力场和速度场流向的分析比较,获取了动车组在不同车速和不同风速下,其设备舱内流场变化情况,以及底部开孔对设备舱内流场的影响。  相似文献   

13.
介绍了列控设备动态监测系统的设备组成、工作原理和主要功能,阐述了系统应用的主要管理制度,并结合相关案例分析说明了系统在列控设备维修工作中发挥的重要作用。  相似文献   

14.
阐述了HXD3机车制动机及其操控设备的工作原理,分析了由操控设备引起的列车管异常自动减压的原因.采用基于时间戳的迭代算法实时更新闸位判定基准值,解决了由环境影响导致操控定位器输出产生误差而引起的异常制动问题,对保证列车运行安全起到了良好效果.  相似文献   

15.
介绍了为新干线开发的中心安装制动盘、均衡压力制动闸片和气动夹钳相结合的新型制动装置,经过试验台试验和实际FASTECH列车运行试验,证实这种新型制动装置达到了所要求的性能。对该新型制动装置进行了改进,以降低噪声。  相似文献   

16.
提出一种远程设备程序更新方法,解决运营中的机车不能在线实时更新车载设备控制程序的问题.利用无线机车信号车地间已有的GSM-R通道传输升级文件,车地间准备好后以短帧形式传输升级文件,传输过程中校验数据和保证每帧数据正确接收.文件传输完毕后,车载设备在确保列车处于停车状态且安全的情况下重启并运行新控制程序.实际应用测试表明,所实现的程序更新方法可有效解决无线机车信号车载设备控制程序更新升级问题,具有良好的适应性和可靠性.  相似文献   

17.
高速列车通过隧道时诱发车厢内压力波动的数值分析   总被引:6,自引:1,他引:5  
在假定列车车体为均匀多孔车体的基础上,根据一维可压缩非定常不等熵流动理论与广义黎曼特征线法,研制了高速列车通过隧道过程中诱发车厢内外空气瞬变压力耦合的计算方法和计算程序。其中,基于热力学第一定律的“充排法”建立了车厢内压力波动的计算方法,并成功地将该方法推广应用于隧道内会车条件下车厢内压力的计算分析中。通过与国外试验数据的验证表明了本文计算方法与程序的正确性,为准确合理地计算高速列车通过隧道时诱发车厢内瞬变压力提供了可靠的分析工具。  相似文献   

18.
在ETCS列控系统中,列车跨区域或跨国家运行时,列车可能与前方线路支持的装载限界、牵引系统、轴重类别不适应,需要车载设备对进路适应性进行监控.地面设备向车载设备提供列车前方的进路适应性数据,车载设备监控列车是否适应前方的线路,并进行安全防护,保证列车运行安全.介绍进路适应性的基本概念,阐述车载设备监控进路适应性数据的基...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号