首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
This paper presents a reliability‐based network design problem. A network reliability concept is embedded into the continuous network design problem in which travelers' route choice behavior follows the stochastic user equilibrium assumption. A new capacity‐reliability index is introduced to measure the probability that all of the network links are operated below their capacities when serving different traffic patterns deviating from the average condition. The reliability‐based network design problem is formulated as a bi‐level program in which the lower level sub‐program is the probit‐based stochastic user equilibrium problem and the upper level sub‐program is the maximization of the new capacity reliability index. The lower level sub‐program is solved by a variant of the method of successive averages using the exponential average to represent the learning process of network users on a daily basis that results in the daily variation of traffic‐flow pattern, and Monte Carlo stochastic loading. The upper level sub‐program is tackled by means of genetic algorithms. A numerical example is used to demonstrate the concept of the proposed framework.  相似文献   

2.
This study develops a methodology to model transportation network design with signal settings in the presence of demand uncertainty. It is assumed that the total travel demand consists of commuters and infrequent travellers. The commuter travel demand is deterministic, whereas the demand of infrequent travellers is stochastic. Variations in demand contribute to travel time uncertainty and affect commuters’ route choice behaviour. In this paper, we first introduce an equilibrium flow model that takes account of uncertain demand. A two-stage stochastic program is then proposed to formulate the network signal design under demand uncertainty. The optimal control policy derived under the two-stage stochastic program is able to (1) optimize the steady-state network performance in the long run, and (2) respond to short-term demand variations. In the first stage, a base signal control plan with a buffer against variability is introduced to control the equilibrium flow pattern and the resulting steady-state performance. In the second stage, after realizations of the random demand, recourse decisions of adaptive signal settings are determined to address the occasional demand overflows, so as to avoid transient congestion. The overall objective is to minimize the expected total travel time. To solve the two-stage stochastic program, a concept of service reliability associated with the control buffer is introduced. A reliability-based gradient projection algorithm is then developed. Numerical examples are performed to illustrate the properties of the proposed control method as well as its capability of optimizing steady-state performance while adaptively responding to changing traffic flows. Comparison results show that the proposed method exhibits advantages over the traditional mean-value approach in improving network expected total travel times.  相似文献   

3.
There is significant current interest in the development of models to describe the day-to-day evolution of traffic flows over a network. We consider the problem of statistical inference for such models based on daily observations of traffic counts on a subset of network links. Like other inference problems for network-based models, the critical difficulty lies in the underdetermined nature of the linear system of equations that relates link flows to the latent path flows. In particular, Bayesian inference implemented using Markov chain Monte Carlo methods requires that we sample from the set of route flows consistent with the observed link flows, but enumeration of this set is usually computationally infeasible.We show how two existing conditional route flow samplers can be adapted and extended for use with day-to-day dynamic traffic. The first sampler employs an iterative route-by-route acceptance–rejection algorithm for path flows, while the second employs a simple Markov model for traveller behaviour to generate candidate entire route flow patterns when the network has a tree structure. We illustrate the application of these methods for estimation of parameters that describe traveller behaviour based on daily link count data alone.  相似文献   

4.
Traffic equilibrium models are fundamental to the analysis of transportation systems. The stochastic user equilibrium (SUE) model which relaxes the perfect information assumption of the deterministic user equilibrium is one such model. The aim of this paper is to develop a new user equilibrium model, namely the MDM-SUE model, that uses the marginal distribution model (MDM) as the underlying route choice model. In this choice model, the marginal distributions of the path utilities are specified but the joint distribution is not. By focusing on the joint distribution that maximizes expected utility, we show that MDM-SUE exists and is unique under mild assumptions on the marginal distributions. We develop a convex optimization formulation for the MDM-SUE. For specific choices of marginal distributions, the MDM-SUE model recreates the optimization formulation of logit SUE and weibit SUE. Moreover, the model is flexible since it can capture perception variance scaling at the route level and allows for modeling different user preferences by allowing for skewed distributions and heavy tailed distributions. The model can also be generalized to incorporate bounded support distributions and discrete distributions which allows to distinguish between used and unused routes within the SUE framework. We adapt the method of successive averages to develop an efficient approach to compute MDM-SUE traffic flows. In our numerical experiments, we test the ability of MDM-SUE to relax the assumption that the error terms are independently and identically distributed random variables as in the logit models and study the additional modeling flexibility that MDM-SUE provides on small-sized networks as well as on the large network of the city of Winnipeg. The results indicate that the model provides both modeling flexibility and computational tractability in traffic equilibrium.  相似文献   

5.
Perceived mean-excess travel time is a new risk-averse route choice criterion recently proposed to simultaneously consider both stochastic perception error and travel time variability when making route choice decisions under uncertainty. The stochastic perception error is conditionally dependent on the actual travel time distribution, which is different from the deterministic perception error used in the traditional logit model. In this paper, we investigate the effects of stochastic perception error at three levels: (1) individual perceived travel time distribution and its connection to the classification by types of travelers and trip purposes, (2) route choice decisions (in terms of equilibrium flows and perceived mean-excess travel times), and (3) network performance measure (in terms of the total travel time distribution and its statistics). In all three levels, a curve fitting method is adopted to estimate the whole distribution of interest. Numerical examples are also provided to illustrate and visualize the above analyses. The graphical illustrations allow for intuitive interpretation of the effects of stochastic perception error at different levels. The analysis results could enhance the understanding of route choice behaviors under both (subjective) stochastic perception error and (objective) travel time uncertainty. Some suggestions are also provided for behavior data collection and behavioral modeling.  相似文献   

6.
This study investigates a travelers’ day-to-day route flow evolution process under a predefined market penetration of advanced traveler information system (ATIS). It is assumed that some travelers equipped with ATIS will follow the deterministic user equilibrium route choice behavior due to the complete traffic information provided by ATIS, while the other travelers unequipped with ATIS will follow the stochastic user equilibrium route choice behavior. The interaction between these two groups of travelers will result in a mixed equilibrium state. We first propose a discrete day-to-day route flow adjustment process for this mixed equilibrium behavior by specifying the travelers’ route adjustment principle and adjustment ratio. The convergence of the proposed day-to-day flow dynamic model to the mixed equilibrium state is then rigorously demonstrated under certain assumptions upon route adjustment principle and adjustment ratio. In addition, without affecting the convergence of the proposed day-to-day flow dynamic model, the assumption concerning the adjustment ratio is further relaxed, thus making the proposed model more appealing in practice. Finally, numerical experiments are conducted to illustrate and evaluate the performance of the proposed day-to-day flow dynamic model.  相似文献   

7.
Suppose that in an urban transportation network there is a specific advanced traveler information system (ATIS) which acts for reducing the drivers' travel time uncertainty through provision of pre‐trip route information. Because of the imperfect information provided, some travelers are not in compliance with the ATIS advice although equipped with the device. We thus divide all travelers into three groups, one group unequipped with ATIS, another group equipped and in compliance with ATIS advice and the third group equipped but without compliance with the advice. Each traveler makes route choice in a logit‐based manner and a stochastic user equilibrium with multiple user classes is reached for every day. In this paper, we propose a model to investigate the evolutions of daily path travel time, daily ATIS compliance rate and yearly ATIS adoption, in which the equilibrium for every day's route choice is kept. The stability of the evolution model is initially analyzed. Numerical results obtained from a test network are presented for demonstrating the model's ability in depicting the day‐to‐day and year‐to‐year evolutions.  相似文献   

8.
In this paper, we consider the continuous road network design problem with stochastic user equilibrium constraint that aims to optimize the network performance via road capacity expansion. The network flow pattern is subject to stochastic user equilibrium, specifically, the logit route choice model. The resulting formulation, a nonlinear nonconvex programming problem, is firstly transformed into a nonlinear program with only logarithmic functions as nonlinear terms, for which a tight linear programming relaxation is derived by using an outer-approximation technique. The linear programming relaxation is then embedded within a global optimization solution algorithm based on range reduction technique, and the proposed approach is proved to converge to a global optimum.  相似文献   

9.
Through relaxing the behavior assumption adopted in Smith’s model (Smith, 1984), we propose a discrete dynamical system to formulate the day-to-day evolution process of traffic flows from a non-equilibrium state to an equilibrium state. Depending on certain preconditions, the equilibrium state can be equivalent to a Wardrop user equilibrium (UE), Logit-based stochastic user equilibrium (SUE), or boundedly rational user equilibrium (BRUE). These equivalence properties indicate that, to make day-to-day flows evolve to equilibrium flows, it is not necessary for travelers to choose their routes based on actual travel costs of the previous day. Day-to-day flows can still evolve to equilibrium flows provided that travelers choose their routes based on estimated travel costs which satisfy these preconditions. We also show that, under a more general assumption than the monotonicity of route cost function, the trajectory of the dynamical system converges to a set of equilibrium flows by reasonably setting these parameters in the dynamical system. Finally, numerical examples are presented to demonstrate the application and properties of the dynamical system. The study is helpful for understanding various processes of forming traffic jam and designing an algorithm for calculating equilibrium flows.  相似文献   

10.
This study proposes a formulation of the within-day dynamic stochastic traffic assignment problem. Considering the stochastic nature of route choice behavior, we treat the solution to the assignment problem as the conditional joint distribution of route traffic, given that the network is in dynamic stochastic user equilibrium. We acquire the conditional joint probability distribution using Bayes’ theorem. A Metropolis–Hastings sampling scheme is developed to estimate the characteristics (e.g., mean and variance) of the route traffic. The proposed formulation has no special requirements for the traffic flow models and user behavior models, and so is easily implemented.  相似文献   

11.
Speed limits are usually imposed on roads in an attempt to enhance safety and sometimes serve the purpose of reducing fuel consumption and vehicular emissions as well. Most previous studies up to date focus on investigation of the effects of speed limits from a local perspective, while network-wide traffic reallocation effects are overlooked. This paper makes the first attempt to investigate how a link-specific speed limit law reallocates traffic flow in an equilibrium manner at a macroscopic network level. We find that, although the link travel time–flow relationship is altered after a speed limit is imposed, the standard traffic assignment method still applies. With the commonly adopted assumptions, the uniqueness of link travel times at user equilibrium (UE) remains valid, and the UE flows on links with non-binding speed limits are still unique. The UE flows on other links with binding speed limits may not be unique but can be explicitly characterized by a polyhedron or a linear system of equalities and inequalities. Furthermore, taking into account the traffic reallocation effects of speed limits, we compare the capability of speed limits and road pricing for decentralizing desirable network flow patterns. Although from a different perspective for regulating traffic flows with a different mechanism, a speed limit law may play the same role as a toll charge scheme and perform better than some negative (rebate) toll schemes under certain conditions for network flow management.  相似文献   

12.
We consider a specific advanced traveler information systems (ATIS) whose objective is to reduce drivers’ travel time uncertainty with recurrent network congestion through provision of traffic information. Since the provided information is still partial or imperfect, drivers equipped with an ATIS cannot always find the shortest travel time route and thus may not always comply with the advice provided by ATIS. Thus, there are three classes of drivers on a specific day: drivers without ATIS, drivers with ATIS but without compliance with ATIS advice, drivers with ATIS and in compliance with ATIS advice. All three classes of drivers make route choice in a stochastic manner, but with different degree of uncertainty of travel time on the network. In this paper we investigate the interactions among the three classes of drivers in an ATIS environment using a multiple behavior stochastic user equilibrium model. By assuming that the market penetration of ATIS is an increasing function of the actual private gain (time saving minus the cost associated with system use) derived from ATIS service, and the ATIS compliance rate of equipped drivers is given as the probability of the actual travel time of complied drivers being less than that of non-complied drivers, we determine the equilibrium market penetration and compliance rate of ATIS and the resulting equilibrium network flow pattern using an iterative solution procedure.  相似文献   

13.
A network change is said to be irreversible if the initial network equilibrium cannot be restored by revoking the change. The phenomenon of irreversible network change has been observed in reality. To model this phenomenon, we develop a day-to-day dynamic model whose fixed point is a boundedly rational user equilibrium (BRUE) flow. Our BRUE based approach to modeling irreversible network change has two advantages over other methods based on Wardrop user equilibrium (UE) or stochastic user equilibrium (SUE). First, the existence of multiple network equilibria is necessary for modeling irreversible network change. Unlike UE or SUE, the BRUE multiple equilibria do not rely on non-separable link cost functions, which makes our model applicable to real-world large-scale networks, where well-calibrated non-separable link cost functions are generally not available. Second, travelers’ boundedly rational behavior in route choice is explicitly considered in our model. The proposed model is applied to the Twin Cities network to model the flow evolution during the collapse and reopening of the I-35 W Bridge. The results show that our model can to a reasonable level reproduce the observed phenomenon of irreversible network change.  相似文献   

14.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability.  相似文献   

15.
Yang  Hai 《Transportation》1999,26(3):299-322
When drivers do not have complete information on road travel time and thus choose their routes in a stochastic manner or based on their previous experience, separate implementations of either route guidance or road pricing cannot drive a stochastic network flow pattern towards a system optimum in a Wardropian sense. It is thus of interest to consider a combined route guidance and road pricing system. A road guidance system could reduce drivers' uncertainty of travel time through provision of traffic information. A driver who is equipped with a guidance system could be assumed to receive complete information, and hence be able to find the minimum travel time routes in a user-optimal manner, while marginal-cost road pricing could drive a user-optimal flow pattern toward a system optimum. Therefore, a joint implementation of route guidance and road pricing in a network with recurrent congestion could drive a stochastic network flow pattern towards a system optimum, and thus achieve a higher reduction in system travel time. In this paper the interaction between route guidance and road pricing is modeled and the potential benefit of their joint implementation is evaluated based on a mixed equilibrium traffic assignment model. The private and system benefits under marginal-cost pricing and varied levels of market penetration of the information systems are investigated with a small and a large example. It is concluded that the two technologies complement each other and that their joint implementation can reduce travel time more efficiently in a network with recurrent congestion.  相似文献   

16.
This paper investigates the nonlinear distance-based congestion pricing in a network considering stochastic day-to-day dynamics. After an implementation/adjustment of a congestion pricing scheme, the network flows in a certain period of days are not on an equilibrium state, thus it is problematic to take the equilibrium-based indexes as the pricing objective. Therefore, the concept of robust optimization is taken for the congestion toll determination problem, which takes into account the network performance of each day. First, a minimax model which minimizes the maximum regret on each day is proposed. Taking as a constraint of the minimax model, a path-based day to day dynamics model under stochastic user equilibrium (SUE) constraints is discussed in this paper. It is difficult to solve this minimax model by exact algorithms because of the implicity of the flow map function. Hence, a two-phase artificial bee colony algorithm is developed to solve the proposed minimax regret model, of which the first phase solves the minimal expected total travel cost for each day and the second phase handles the minimax robust optimization problem. Finally, a numerical example is conducted to validate the proposed models and methods.  相似文献   

17.
Seating or standing make distinct on‐board states to a transit rider, yielding distinct discomfort costs, with potential influence on the passenger route choice onto the transit network. The paper provides a transit assignment model that captures the seating capacity and its occupancy along any transit route. The main assumptions pertain to: the seat capacity by service route, selfish user behaviour, a seat allocation process with priority rules among the riders, according to their prior state either on‐board or at boarding. To each transit leg from access to egress station is associated a set of ‘service modes’, among which the riders are assigned in a probabilistic way, conditionally on their priority status and the ratio between the available capacity and the flow of them. Thus the leg cost is a random variable, with mean value to be included in the trip disutility. Computationally efficient algorithms are provided for, respectively, loading the leg flows and evaluating the leg costs along a transit line. At the network level, a hyperpath formulation is provided for supply‐demand equilibrium, together with a property of existence and an method of successive averages equilibration algorithm. It is shown that multiple equilibria may arise. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Social interaction is increasingly recognized as an important factor that influences travelers’ behaviors. It remains challenging to incorporate its effect into travel choice behaviors, although there has been some research into this area. Considering random interaction among travelers, we model travelers’ day-to-day route choice under the uncertain traffic condition. We further explore the evolution of network flow based on the individual-level route choice model, though that travelers are heterogeneous in decision-making under the random-interaction scheme. We analyze and prove the existence of equilibrium and the stability of equilibrium. We also analyzed and described the specific properties of the network flow evolution and travelers’ behaviors. Two interesting phenomena are found in this study. First, the number of travelers that an individual interacts with can affect his route choice strategy. However, the interaction count exerts no influence on the evolution of network flow at the aggregate-level. Second, when the network flow reaches equilibrium, the route choice strategy at the individual-level is not necessarily invariable. Finally, two networks are used as numerical examples to show model properties and to demonstrate the two study phenomena. This study improves the understanding of travelers’ route choice dynamics and informs how the network flow evolves under the influence of social interaction.  相似文献   

19.
The purpose of this paper is to examine the scaling effect and overlapping problem in a route choice context using the logit-based stochastic user equilibrium (SUE) principle to explicitly account for the congestion effect. Numerical experiments are performed on nine models: the deterministic user equilibrium model, the multinomial logit SUE model with and without scaling, the C-logit SUE model with and without scaling, the path-size logit SUE model with and without scaling, and the paired combinatorial logit SUE model with and without scaling. Sensitivity analysis is conducted to examine the effects of route sets, congestion levels, dispersion intensities, and network asymmetries. A real transportation network in the City of Winnipeg, Canada is also used to compare the network equilibrium flow allocations of different SUE models. The results of the sensitivity analysis and the Winnipeg network reveal that both scaling effect and overlapping problem can have a significant impact on the network equilibrium flow allocations.  相似文献   

20.
Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts to constrain link flows to capacity. Capacity constrained models with residual queues are often referred to as quasi-dynamic traffic assignment models. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a first order node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in general transportation networks. This model includes a first order (steady-state) node model that yields more realistic turn capacities, which are then used to determine consistent capacity constrained traffic flows, residual point (vertical) queues (upstream bottleneck links), and path travel times consistent with queuing theory. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques to find a solution. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号