首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Real‐time signal control operates as a function of the vehicular arrival and discharge process to satisfy a pre‐specified operational performance. This process is often predicted based on loop detectors placed upstream of the signal. In our newly developed signal control for diamond interchanges, a microscopic model is proposed to estimate traffic flows at the stop‐line. The model considers the traffic dynamics of vehicular detection, arrivals, and departures, by taking into account varying speeds, length of queues, and signal control. As the signal control is optimized over a rolling horizon that is divided into intervals, the vehicular detection for and projection into the corresponding horizon intervals are also modeled. The signal control algorithm is based on dynamic programming and the optimization of signal policy is performed using a certain performance measure involving delays, queue lengths, and queue storage ratios. The arrival–discharge model is embedded in the optimization algorithm and both are programmed into AIMSUN, a microscopic stochastic simulation program. AIMSUN is then used to simulate the traffic flow and implement the optimal signal control by accessing internal data including detected traffic demand and vehicle speeds. Sensitivity analysis is conducted to study the effect of selecting different optimization criteria on the signal control performance. It is concluded that the queue length and queue storage ratio are the most appropriate performance measures in real‐time signal control of interchanges. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We study how to estimate real time queue lengths at signalized intersections using intersection travel times collected from mobile traffic sensors. The estimation is based on the observation that critical pattern changes of intersection travel times or delays, such as the discontinuities (i.e., sudden and dramatic increases in travel times) and non-smoothness (i.e., changes of slopes of travel times), indicate signal timing or queue length changes. By detecting these critical points in intersection travel times or delays, the real time queue length can be re-constructed. We first introduce the concept of Queue Rear No-delay Arrival Time which is related to the non-smoothness of queuing delay patterns and queue length changes. We then show how measured intersection travel times from mobile sensors can be processed to generate sample vehicle queuing delays. Under the uniform arrival assumption, the queuing delays reduce linearly within a cycle. The delay pattern can be estimated by a linear fitting method using sample queuing delays. Queue Rear No-delay Arrival Time can then be obtained from the delay pattern, and be used to estimate the maximum and minimum queue lengths of a cycle, based on which the real-time queue length curve can also be constructed. The model and algorithm are tested in a field experiment and in simulation.  相似文献   

3.
Traffic signal timings in a road network can not only affect total user travel time and total amount of traffic emissions in the network but also create an inequity problem in terms of the change in travel costs of users traveling between different locations. This paper proposes a multi‐objective bi‐level programming model for design of sustainable and equitable traffic signal timings for a congested signal‐controlled road network. The upper level of the proposed model is a multi‐objective programming problem with an equity constraint that maximizes the reserve capacity of the network and minimizes the total amount of traffic emissions. The lower level is a deterministic network user equilibrium problem that considers the vehicle delays at signalized intersections of the network. To solve the proposed model, an approach for normalizing incommensurable objective functions is presented, and a heuristic solution algorithm that combines a penalty function approach and a simulated annealing method is developed. Two numerical examples are presented to show the effects of reserve capacity improvement and green time proportion on network flow distribution and transportation system performance and the importance of incorporating environmental and equity objectives in the traffic signal timing problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Travel time estimation and prediction on urban arterials is an important component of Active Traffic and Demand Management Systems (ATDMS). This paper aims in using the information of GPS probes to augment less dynamic but available information describing arterial travel times. The direction followed in this paper chooses a cooperative approach in travel time estimation using static information describing arterial geometry and signal timing, semi-dynamic information of historical travel time distributions per time of day, and utilizes GPS probe information to augment and improve the latter. First, arterial travel times are classified by identifying different travel time states, then link travel time distributions are approximated using mixtures of normal distributions. If prior travel time data is available, travel time distributions can be estimated empirically. Otherwise, travel time distribution can be estimated based on signal timing and arterial geometry. Real-time GPS travel time data is then used to identify the current traffic condition based on Bayes Theorem. Moreover, these GPS data can also be used to update the parameters of the travel time distributions using a Bayesian update. The iterative update process makes the posterior distributions more and more accurate. Finally, two comprehensive case studies using the NGSIM Peachtree Street dataset, and GPS data of Washington Avenue in Minneapolis, were conducted. The first case study estimated prior travel time distributions based on signal timing and arterial geometry under different traffic conditions. Travel time data were classified and corresponding distributions were updated. In addition, results from the Bayesian update and EM algorithm were compared. The second case study first tested the methodologies based on real GPS data and showed the importance of sample size. In addition, a methodology was proposed to distinguish new traffic conditions in the second case study.  相似文献   

5.
The optimization of traffic signalization in urban areas is formulated as a problem of finding the cycle length, the green times and the offset of traffic signals that minimize an objective function of performance indices. Typical approaches to this optimization problem include the maximization of traffic throughput or the minimization of vehicles’ delays, number of stops, fuel consumption, etc. Dynamic Traffic Assignment (DTA) models are widely used for online and offline applications for efficient deployment of traffic control strategies and the evaluation of traffic management schemes and policies. We propose an optimization method for combining dynamic traffic assignment and network control by minimizing the risk of potential loss induced to travelers by exceeding their budgeted travel time as a result of deployed traffic signal settings, using the Conditional Value-at-Risk model. The proposed methodology can be easily implemented by researchers or practitioners to evaluate their alternative strategies and aid them to choose the alternative with less potential risk. The traffic signal optimization procedure is implemented in TRANSYT-7F and the dynamic propagation and route choice of vehicles is simulated with a mesoscopic dynamic traffic assignment tool (DTALite) with fixed temporal demand and network characteristics. The proposed approach is applied to a reference test network used by many researchers for verification purposes. Numerical experiments provide evidence of the advantages of this optimization method with respect to conventional optimization techniques. The overall benefit to the performance of the network is evaluated with a Conditional Value-at-Risk Analysis where the optimal solution is the one presenting the least risk for ‘guaranteed’ total travel times.  相似文献   

6.
This study proposes an integrated multi‐objective model to determine the optimal rescue path and traffic controlled arcs for disaster relief operations under uncertainty environments. The model consists of three sub‐models: rescue shortest path model, post‐disaster traffic assignment model, and traffic controlled arcs selection model to minimize four objectives: travel time of rescue path, total detour travel time, number of unconnected trips of non‐victims, and number of police officers required. Since these sub‐models are inter‐related with each other, they are solved simultaneously. This study employs genetic algorithms incorporated with traffic assignment and K‐shortest path methods to determine optimal rescue path and controlled arcs. To cope with uncertain information associated with the damaged network, fuzzy system reliability theory (weakest t‐norm method) is used to measure the access reliability of rescue path. To investigate the validity and applicability of the proposed model, studies on an exemplified case and a field case of Chi‐Chi earthquake in Taiwan are conducted. The performances of three rescue strategies: without traffic control, selective traffic control (i.e. the proposed model) and absolute traffic control are compared. The results show that the proposed model can maintain the efficiency of rescue activity with minimal impact to ordinary trips and number of police officers required.  相似文献   

7.
Oversized vehicles, such as trucks, significantly contribute to traffic delays on freeways. Heterogeneous traffic populations, that is, those consisting of multiple vehicles types, can exhibit more complicated travel behaviors in the operating speed and performance, depending on the traffic volume as well as the proportions of vehicle types. In order to estimate the component travel time functions for heterogeneous traffic flows on a freeway, this study develops a microscopic traffic‐simulation based four‐step method. A piecewise continuous function is proposed for each vehicle type and its parameters are estimated using the traffic data generated by a microscopic traffic simulation model. The illustrated experiments based on VISSIM model indicate that (i) in addition to traffic volume, traffic composition has significant influence on the travel time of vehicles and (ii) the respective estimations for travel time of heterogeneous flows could greatly improve their estimation accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In the wake of traffic congestion at intersections, it is imperative to shorten delays in corridors with stochastic arrivals. Coordinated adaptive control can adjust green time flexibly to deal with a stochastic demand, while maintaining a minimum through-band for coordinated intersections. In this paper, a multi-stage stochastic program based on phase clearance reliability (PCR) is proposed to optimize base timing plans and green split adjustments of coordinated intersections under adaptive control. The objective is to minimize the expected intersection delay and overflow of the coordinated approach. The overflow or oversaturated effect is explicitly addressed in the delay calculation, which greatly increases the modeling complexity due to the interaction of overflow delays across cycles. The notion of PCR separates the otherwise related green time settings of consecutive cycles into a number of stages, in which the base timing plan and actual timing plan in different cycles are handled sequentially. We then develop a PCR based solution algorithm to solve the problem, and apply the model and the solution algorithm to actual intersections in Shanghai to investigate its performance as compared with Allsop’s method and Webster’s method. Preliminary results show the PCR-based method can significantly shorten delays and almost eliminates overflow for the coordinated approaches, with acceptable delay increases of the non-coordinated approaches. A comparison between the proposed coordinated adaptive logic and a coordinated actuated logic is also conducted in the case study to show the advantages and disadvantages.  相似文献   

9.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

10.
This paper explores at the planning level the benefits of coordinating tram movements and signal timings at controlled intersections. Although trams may have dedicated travel lanes, they mostly operate in a mixed traffic environment at intersections. To ensure tram progression, pre-set signal timings at intersections are adjusted by activating Transit Signal Priority (TSP) actions, which inevitably add delays to the auto traffic. A mixed integer program is proposed for jointly determining tram schedules for a single tram line and modifying signal timings at major controlled intersections. The objective is to minimize the weighted sum of the total tram travel time and TSP’s negative impacts on other traffic. A real-world case study of Line 5 of the Shenyang Hunnan Modern Tramway shows that by extending the dwell time or link travel time we can significantly reduce the TSP’s negative impacts on the auto traffic while only slightly increasing tram travel times.  相似文献   

11.
Estimation of time-dependent arterial travel time is a challenging task because of the interrupted nature of urban traffic flows. Many research efforts have been devoted to this topic, but their successes are limited and most of them can only be used for offline purposes due to the limited availability of traffic data from signalized intersections. In this paper, we describe a real-time arterial data collection and archival system developed at the University of Minnesota, followed by an innovative algorithm for time-dependent arterial travel time estimation using the archived traffic data. The data collection system simultaneously collects high-resolution “event-based” traffic data including every vehicle actuations over loop detector and every signal phase changes from multiple intersections. Using the “event-based” data, we estimate time-dependent travel time along an arterial by tracing a virtual probe vehicle. At each time step, the virtual probe has three possible maneuvers: acceleration, deceleration and no-speed-change. The maneuver decision is determined by its own status and surrounding traffic conditions, which can be estimated based on the availability of traffic data at intersections. An interesting property of the proposed model is that travel time estimation errors can be self-corrected, because the trajectory differences between a virtual probe vehicle and a real one can be reduced when both vehicles meet a red signal phase and/or a vehicle queue. Field studies at a 11-intersection arterial corridor along France Avenue in Minneapolis, MN, demonstrate that the proposed model can generate accurate time-dependent travel times under various traffic conditions.  相似文献   

12.
In real traffic networks, travellers’ route choice is affected by traffic control strategies. In this research, we capture the interaction between travellers’ route choice and traffic signal control in a coherent framework. For travellers’ route choice, a VANET (Vehicular Ad hoc NETwork) is considered, where travellers have access to the real-time traffic information through V2V/V2I (Vehicle to Vehicle/Vehicle to Infrastructure) infrastructures and make route choice decisions at each intersection using hyper-path trees. We test our algorithm and control strategy by simulation in OmNet++ (A network communication simulator) and SUMO (Simulation of Urban MObility) under several scenarios. The simulation results show that with the proposed dynamic routing, the overall travel cost significantly decreases. It is also shown that the proposed adaptive signal control reduces the average delay effectively, as well as reduces the fluctuation of the average speed within the whole network.  相似文献   

13.
The benefit of eco-driving of electric vehicles (EVs) has been studied with the promising connected vehicle (i.e. V2X) technology in recent years. Whereas, it is still in doubt that how traffic signal control affects EV energy consumption. Therefore, it is necessary to explore the interactions between the traffic signal control and EV energy consumption. This research aims at studying the energy efficiency and traffic mobility of the EV system under V2X environment. An optimization model is proposed to meet both operation and energy efficiency for an EV transportation system with both connected EVs (CEVs) and non-CEVs. For CEVs, a stage-wise approximation model is implemented to provide an optimal speed control strategy. Non-CEVs obey a car-following rule suggested by the well-known Intelligent Driver Model (IDM) to achieve eco-driving. The eco-driving EV system is then integrated with signal control and a bi-objective and multi-stage optimization problem is formulated. For such a large-scale problem, a hybrid intelligent algorithm merging genetic algorithm (GA) and particle swarm optimization (PSO) is implemented. At last, a validation case is performed on an arterial with four intersections with different traffic demands. Results show that cycle-based signal control could improve both traffic mobility and energy saving of the EV system with eco-driving compared to a fixed signal timing plan. The total consumed energy decreases as the CEV penetration rate augments in general.  相似文献   

14.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Finding the optimal location and signal timing plan is one of the most critical operational issues for a signalized midblock crosswalk on an arterial section, which is increasingly being installed in highly populated areas in developing countries such as China. This paper presents a multiobjective optimization model and an efficient solution algorithm for a one‐ or two‐stage midblock crosswalk on an arterial section. The proposed model aims to produce the optimal location and corresponding signal settings to balance the trade‐off between pedestrian delays and vehicular bandwidth when the signals of the crosswalk and adjacent intersections are coordinated. The proposed model has three distinguishing features: (i) the costs for both pedestrians and vehicles are considered in a unified framework; (ii) the location and signal settings of the midblock crosswalk are simultaneously optimized; and (iii) a multiobjective optimization approach is developed to study the effectiveness of the midblock crosswalk under conditions in which the priorities between pedestrian and vehicle flows differ. A nondominated sorting genetic algorithm II (NSGA II)‐based algorithm is developed to solve the model efficiently. The results of the case study showed that the proposed model would help traffic practitioners, researchers, and authorities properly locate and signalize a one‐ or two‐stage midblock pedestrian crosswalk on an arterial section. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A variety of sensor technologies, such as loop detectors, traffic cameras, and radar have been developed for real-time traffic monitoring at intersections most of which are limited to providing link traffic information with few being capable of detecting turning movements. Accurate real-time information on turning movement counts at signalized intersections is a critical requirement for applications such as adaptive traffic signal control. Several attempts have been made in the past to develop algorithms for inferring turning movements at intersections from entry and exit counts; however, the estimation quality of these algorithms varies considerably. This paper introduces a method to improve accuracy and robustness of turning movement estimation at signalized intersections. The new algorithm makes use of signal phase status to minimize the underlying estimation ambiguity. A case study was conducted based on turning movement data obtained from a four-leg signalized intersection to evaluate the performance of the proposed method and compare it with two other existing well-known estimation methods. The results show that the algorithm is accurate, robust and fairly straightforward for real world implementation.  相似文献   

17.
This study develops a methodology to model transportation network design with signal settings in the presence of demand uncertainty. It is assumed that the total travel demand consists of commuters and infrequent travellers. The commuter travel demand is deterministic, whereas the demand of infrequent travellers is stochastic. Variations in demand contribute to travel time uncertainty and affect commuters’ route choice behaviour. In this paper, we first introduce an equilibrium flow model that takes account of uncertain demand. A two-stage stochastic program is then proposed to formulate the network signal design under demand uncertainty. The optimal control policy derived under the two-stage stochastic program is able to (1) optimize the steady-state network performance in the long run, and (2) respond to short-term demand variations. In the first stage, a base signal control plan with a buffer against variability is introduced to control the equilibrium flow pattern and the resulting steady-state performance. In the second stage, after realizations of the random demand, recourse decisions of adaptive signal settings are determined to address the occasional demand overflows, so as to avoid transient congestion. The overall objective is to minimize the expected total travel time. To solve the two-stage stochastic program, a concept of service reliability associated with the control buffer is introduced. A reliability-based gradient projection algorithm is then developed. Numerical examples are performed to illustrate the properties of the proposed control method as well as its capability of optimizing steady-state performance while adaptively responding to changing traffic flows. Comparison results show that the proposed method exhibits advantages over the traditional mean-value approach in improving network expected total travel times.  相似文献   

18.
The cumulative travel‐time responsive (CTR) algorithm determines optimal green split for the next time interval by identifying the maximum cumulative travel time (CTT) estimated under the connected vehicle environment. This paper enhanced the CTR algorithm and evaluated its performance to verify a feasibility of field implementation in a near future. Standard Kalman filter (SKF) and adaptive Kalman filter (AKF) were applied to estimate CTT for each phase in the CTR algorithm. In addition, traffic demand, market penetration rate (MPR), and data availability were considered to evaluate the CTR algorithm's performance. An intersection in the Northern Virginia connected vehicle test bed is selected for a case study and evaluated within vissim and hardware in the loop simulations. As expected, the CTR algorithm's performance depends on MPR because the information collected from connected vehicle is a key enabling factor of the CTR algorithm. However, this paper found that the MPR requirement of the CTR algorithm could be addressed (i) when the data are collected from both connected vehicle and the infrastructure sensors and (ii) when the AKF is adopted. The minimum required MPRs to outperform the actuated traffic signal control were empirically found for each prediction technique (i.e., 30% for the SKF and 20% for the AKF) and data availability. Even without the infrastructure sensors, the CTR algorithm could be implemented at an intersection with high traffic demand and 50–60% MPR. The findings of this study are expected to contribute to the field implementation of the CTR algorithm to improve the traffic network performance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Railway traffic is heavily affected by disturbances and/or disruptions, which are often cause of delays and low performance of train services. The impact and the propagation of such delays can be mitigated by relying on automatic tools for rescheduling traffic in real-time. These tools predict future track conflict based on current train information and provide suitable control measures (e.g. reordering, retiming and/or rerouting) by using advanced mathematical models. A growing literature is available on these tools, but their effects on real operations are blurry and not yet well known, due to the very scarce implementation of such systems in practice.In this paper we widen the knowledge on how automatic real-time rescheduling tools can influence train performance when interfaced with railway operations. To this purpose we build up a novel traffic control framework that couples the state-of-the art automatic rescheduling tool ROMA, with the realistic railway traffic simulation environment EGTRAIN, used as a surrogate of the real field. At regular times ROMA is fed with current traffic information measured from the field (i.e. EGTRAIN) in order to predict possible conflicts and compute (sub) optimal control measures that minimize the max consecutive delay on the network. We test the impact of the traffic control framework based on different types of interaction (i.e. open loop, multiple open loop, closed loop) between the rescheduling tool and the simulation environment as well as different combinations of parameter values (such as the rescheduling interval and prediction horizon). The influence of different traffic prediction models (assuming e.g. aggressive versus conservative driving behaviour) is also investigated together with the effects on traffic due to control delays of the dispatcher in implementing the control measures computed by the rescheduling tool.Results obtained for the Dutch railway corridor Utrecht–Den Bosch show that a closed loop interaction outperforms both the multiple open loop and the open loop approaches, especially with large control delays and limited information on train entrance delays and dwell times. A slow rescheduling frequency and a large prediction horizon improve the quality of the control measure. A limited control delay and a conservative prediction of train speed help filtering out uncertain traffic dynamics thereby increasing the effectiveness of the implemented measures.  相似文献   

20.
Abstract

This paper reviews the literature on the evacuation demand problem, with an emphasis on the impact of various modelling approaches on network‐wide evacuation performance measures. First, a number of important factors that affect evacuee behaviour are summarized. Evacuation software packages and tools are also investigated in terms of the demand generation model they use. The most widely used models are then selected for performing sensitivity analysis. Next, a cell‐transmission‐based system optimal dynamic traffic assignment (SO‐DTA) model is employed to assess the effects of the demand model choice on the clearance time and average travel time. It is concluded that evacuation demand models should be selected with care, and policy makers should make sure the selected demand curve can replicate real‐life conditions with relatively high fidelity for the study region to be able to develop reliable and realistic evacuation plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号