首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
风吹雪往往在铁路路堑地段形成较厚的积雪,掩埋线路,影响行车速度,危及行车安全,研究其具有重要的现实意义。基于FLUENT软件,模拟研究不同挡雪墙高度、不同风速下,挡雪墙背风侧风雪两相流的运动特性及挡雪墙参数优化设计。研究表明,风雪流初始速度一定时,挡雪墙背风侧积雪宽度随挡雪墙高度增大而变大,沉积在床面上的雪粒更多,阻雪效果越好;挡雪墙高度一定时,背风侧积雪宽度随风雪流速度的增加逐渐增大,挡雪墙距线路的距离也应越大。在综合考虑工程造价和挡雪效果的基础上,挡雪墙设计时,高度宜在2.5~3.5m,高度越高,风速越大,挡雪墙距线路的距离应越大,一般在20~35m即可。  相似文献   

2.
为研究风屏障对大跨度铁路悬索桥横向刚度的影响,以某主跨1 060 m的铁路悬索桥为例,采用风洞试验测试车桥系统气动特性,通过改变加劲梁横向截面惯性矩实现不同的横向刚度,采用风-车-桥耦合振动分析方法,研究大跨度铁路悬索桥的横向挠跨比限值,讨论风屏障高度、车速及桥梁跨度的影响,在考虑激励随机性影响的基础上按规范加载条件得到桥梁横向挠跨比限值。结果表明:车速越高,桥梁跨径越小,横向挠跨比限值越严格;在不同跨度和车速条件下,风屏障均可提高横向挠跨比限值,其中设置3.5 m高度风屏障时,横向挠跨比限值可提升约9%,且当车速为200 km/h时,横向挠跨比限值可取为1/1 200。  相似文献   

3.
王晓军 《铁道建筑技术》2011,(5):110-112,121
新疆精伊霍铁路横穿北天山,该区积雪期长达6个月,风力最大10级,起雪风速3.4 m/s,工点范围内风速最大可达24.8 m/s,对积雪的沉降及二次分配较大,山谷处风速较低,易形成山地沟谷的深厚积雪,当铁路开挖成路堑且风向与路堑斜交或垂直时,则能填埋铁路线,以至填平路堑,尤其是暴风雪更严重地影响了铁路运输的安全、畅通。为减小风吹雪对铁路的危害,精伊霍铁路在开工实施前便成立研究小组,通过多年研究实施采用了防风吹雪走廊、挡风墙、挡雪栅栏、防护林带等组成防风吹雪系统工程。建成后通过几年的运营观察该系统工程在防治风吹雪害方面技术先进、效果明显,有效降低了风吹雪对铁路的危害。  相似文献   

4.
西部风沙地区强风沙流对高速列车运行带来巨大安全隐患。高速列车的行驶线路一般分为平直地面、路堤及高架桥等,不同线路类型对高速列车气动特性的影响差异明显,尤其在强横风下,列车运行的流场特性更加复杂。为研究风沙环境下不同线路类型对高速列车横风气动特性的影响,采用数值模拟方法对列车运行速度250 km/h,横风风速分别为10,20,30,40,50 m/s,线路结构分别为平直地面、5 m路堤及10 m高架桥等不同工况下的列车气动性能进行仿真对比分析。计算结果表明:风沙环境下列车迎风侧正压区域及背风侧负压区域相比无沙环境均增大,其中,头车在平地工况下压力增幅最大,路堤及高架桥工况较小;风沙流中沙粒增加了列车的阻力,随着横风风速增大,头车阻力系数减小,尾车阻力系数增大,中间车阻力系数基本不变,列车侧向力系数均增大;在同一横风风速下,不同类型线路对头车的阻力系数和侧向力系数影响最大,其中,在路堤工况下列车稳定性较差,更容易发生侧翻危险。  相似文献   

5.
兰新铁路十三间房段的戈壁风沙流特征分析   总被引:4,自引:0,他引:4  
研究目的:通过对兰新铁路"百里风区"风沙成因进行分析,研究戈壁砾漠地区风沙流密度沿高度变化的特点,不同高度风沙流密度与风速的关系及大风携沙的粒径分布特征。研究结论:戈壁地区大风携沙主要集中在3 m以下,约占总携沙量的87%左右;在同一高度条件下,风沙流密度随着风速的增加显现e的指数增加;而当风速条件一致时,风沙流密度随着高度的增加显现下降趋势。集沙颗粒分析则指出:在不大于3 m的高度范围内百里风区的风沙流运动形式是以跃移为主;超过3 m以后,则以悬移为主。  相似文献   

6.
以某公铁两用桥为研究背景,通过大比尺节段模型风洞试验,使用天平测试有无风屏障时公路和铁路车辆气动特性,采用风速仪测试了桥面的风剖面分布,研究了车道和车辆类型对公路桥面车辆气动特性的影响。结果表明:设置风屏障有效降低了公路和铁路桥面的局部风速和车辆的气动力系数;公路桥面车辆气动力系数总体上随车道距风屏障距离的增加而减小,相同风屏障对大货车气动特性的降低程度相对于小货车和客车更为明显;设置风屏障后铁路桥面迎风侧和背风侧列车阻力系数的折减率基本接近,但升力系数的折减率差异较大。  相似文献   

7.
铁路声屏障风荷载体型系数研究   总被引:2,自引:0,他引:2  
鉴于现行国家规范对铁路声屏障的风荷载体型系数没有明确的规定,采用CFD流体动力学计算软件、风洞模型测压试验和风洞模型测力试验3种方法,系统研究分析桥梁上、路基上声屏障的风荷载体型系数,比较分析2种不同高度的声屏障设置在线路上风侧、线路两侧和线路下风侧等工况时对其风荷载体型系数的影响.研究结果表明:在计算声屏障风荷载时,如果按照矩形构件的体型系数及风压分布取值,可能会低估声屏障的风荷载数值,声屏障设置的位置对其风荷载体型系数的影响很大,而声屏障的高度对其风荷载体型系数的影响则较小;在对桥梁和路基的声屏障进行结构设计时,建议桥梁声屏障的风荷载体型系数取1.65,路基声屏障的风荷载体型系数取1.99.  相似文献   

8.
风屏障是常用的高铁桥梁防风设施,新型导风屏障能够减小屏障风荷载,兼顾风屏障和桥梁结构安全。为明确导风屏障的防风机理,通过1∶15的大比例节段模型风洞试验,采用开发的移动测试系统和眼镜蛇风速仪测试桥上的湍流度和3个方向的风速分量,研究导风屏障参数—导风面1倾角、导风面2高度和屏障下部尺寸对桥上三维风场特性的影响,并通过3种等效方法获得了不同试验工况下的等效风特性指标,为导风屏障参数设计提供依据。研究结果表明:导风屏障能够有效减小桥上风速,且具有较强的气流引导作用,横向风速比和垂向风速比最大分别可达0.25和0.17。导风面1角度改变对桥上风场影响较小,导风面2高度对横向和垂向导风作用影响明显,减小导风面2高度时横向风速比极值上升0.1以上。增大导风屏障下部尺寸可增强遮挡作用和导风作用,且能够抑制桥面附近的射流强度。遮蔽作用是导风屏障防风效果的主导因素,但导风屏障对气流的偏转作用亦会一定程度影响防风效果,考虑三维风特性的等效屏蔽参数与基于合成风速的等效风速的评价结果差异极值减少20%。  相似文献   

9.
研究目的:高速铁路和普速铁路在噪声源组成、位置及传播特性上均有所不同,高速铁路声屏障结构因受列车运行脉动力作用下的疲劳影响,声屏障结构设计有别于普速铁路。本文通过研究高速及普速铁路声源特性、作用于高速铁路声屏障的气动压力和声屏障结构的动力响应,旨在提高铁路声屏障降噪效果和结构安全性。研究结论:(1)普速铁路声屏障等效声源位置为轨面以上0. 5 m,客货列车的等效频率分别为500 Hz、1 000 Hz;高速铁路声屏障等效声源位置为轨面以上0. 6 m和3. 3~4. 9 m,等效频率为1 250 Hz;(2)高速铁路声屏障设计应考虑脉动气压力作用下的疲劳影响,声屏障单元板与H型钢立柱宜采用直插式,H型钢立柱与基础的连接螺栓应采用高强度螺栓并采取防松动措施;(3)声屏障的设置不能影响铁路线路的维护维修、路基排水,距接触网带电体5 m范围内的声屏障金属构件必须接入综合接地系统;(4)本研究结论可为铁路声屏障设计提供指导和借鉴。  相似文献   

10.
为研究间距对非对称公铁双幅主梁气动特性的影响,以某大跨度公铁双幅斜拉桥主梁断面为背景进行节段模型风洞试验,在间距L/Br=0.2~2.0范围内,测试了2种不同来流方向下双幅主梁的气动特性,分析非对称双幅主梁气动力系数、表面风压分布并推断主梁周围绕流特征,明确间距对非对称公铁双幅主梁气动干扰规律的影响规律。结果表明:无论风向角α=0°或α=180°,上游主梁气动力系数、表面风压分布和绕流方式受间距影响程度相对较小,与单幅主梁气动特性和绕流方式相似;但下游主梁气动特性受间距影响较大,且完全不同于单幅主梁,间隙处的绕流形式随间距的增大而发生变化,下游主梁气动力系数、平均风压系数曲线和脉动风压曲线也表现出完全不同的规律;且间距越大,下游主梁气动特性和绕流方式越接近于单幅主梁。公路主梁的流线性相比于铁路主梁更强,这种气动外形差异导致2种来流方向下非对称双幅主梁气动特性和绕流形式不同,间距在L/Br=0.2~2.0范围内,气动干扰对其影响规律也完全不同。如α=0°时,双主梁上表面始终为“单一钝体流态”;但α=180°时,双主梁上表面属于“剪切层附着流态”,间距不同,上游公路主梁尾流附着于下游铁路主...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号