共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
G3铜陵长江公铁大桥主桥为主跨988 m的斜拉-悬索协作体系桥,公铁上、下分层布置,上层通行6车道高速公路,下层通行4线铁路。主缆平面布置,垂跨比为1/6.5,横向中心距34.7 m,纯悬吊段长331 m,标准抗拉强度2 000 MPa;斜拉索与吊索交叉索共6对,交叉区斜拉索和吊索交错锚固于主梁上。主梁采用钢桁梁,桁高13.5 m,桁宽35 m。桥塔为门形钢筋混凝土结构,合肥侧、铜陵侧塔高分别为228.5、222.5 m。斜拉索采用■7 mm高强平行钢丝索,呈扇形布置,标准抗拉强度2 000 MPa;吊索采用■7 mm高强平行钢丝索,平面布置,标准抗拉强度1 770 MPa。2个桥塔墩均采用钻孔桩基础。合肥侧锚碇采用复合式地下连续墙基础,铜陵侧锚碇采用复合板桩嵌岩扩大基础。理论分析和试验研究表明大桥具有良好的静、动力性能,能够满足高速铁路行车要求。 相似文献
4.
泰州长江公路大桥夹江桥左、右汊主桥分别为(87.5+3×125+87.5)m、(87.5+2×125+87.5)m预应力混凝土连续箱梁桥,通航标准为Ⅲ级航道。采用动力数值模拟法对该夹江桥主桥船撞力进行分析,通过有限元软件计算该桥在2种工况下的船撞力。计算结果表明:24~27号、44~46号桥墩船撞力均较大。根据计算结果,结合该桥水文及结构特点对其基础进行结构设计。该夹江桥主桥基础分为3种类型:24~26号、44~46号墩采用整体基础,基础采用19根直径2.0 m的钻孔桩;27号墩也采用整体基础,基础采用16根直径1.8 m的钻孔桩;其他桥墩基础分幅设置。 相似文献
5.
《筑路机械与施工机械化》2012,29(4):5-6
工程概况合福铁路客运专线正线全长808.41 km,其中安徽段长343 km,分为8个标段.由中铁大桥局施工的HFZQ-3标段全长16.719 km,合同总价为36.985亿元,是合福铁路的关键控制性工程,由北引桥(部分)、北合建段引桥、跨江主桥、南合建段引桥和南引桥组成. 相似文献
6.
G3铜陵长江公铁大桥主桥为(127.5+131+988+131+127.5) m公铁两用斜拉-悬索协作体系桥,双层桥面布置,上层为高速公路,下层为普速铁路与城际铁路。主梁为两主桁钢桁梁结构,采用三角形桁式,桁高13.5 m,桁宽35.0 m。上、下弦杆采用箱形截面,腹杆采用H形、王字形(腹板带肋H形)和箱形截面。上、下层桥面采用正交异性钢桥面板(下层压重区域采用整箱)与主桁形成板(箱)桁组合结构。为改善主桁节点受力,将腹杆的腹板在节点内延至上弦杆底板和下弦杆顶板。斜拉索和吊索的交叉区梁上锚固点采用纵向错开、横向偏移布置。采用有限元软件对结构进行整体和局部计算,结果表明:结构设计满足规范要求。主梁节段为全焊结构,边跨采用顶推施工,中跨斜拉段采用架梁吊机单悬臂施工,悬吊段采用缆载吊机由跨中向桥塔方向安装,合龙段设在斜拉-悬吊交叉区。 相似文献
7.
8.
9.
基于碰撞数值模拟的桥梁等效静力船撞力——基本公式 总被引:4,自引:0,他引:4
建立3000-50003t载重吨位共5艘典型船舶的精细碰撞有限元分析模型,采用LS—DYNA碰撞分析软件计算得到相应的船撞力时间过程。给出最大峰值、局部平均和全局平均3种等效静力船撞力的定义,研究3种等效静力船撞力与船舶载重吨位和碰撞速度的关系。基于对碰撞计算结果的统计分析与参数拟合,提出桥梁等效静力船撞力计算的统计关系,并与美国AASnTO《桥梁船舶撞击设计指南》、《欧洲统一规范2.7分册》和我国《铁路桥涵设计基本规范》(TB10002.1—99)中给出的等效静力船撞力计算公式进行对比和讨论。 相似文献
10.
铜陵公铁两用长江大桥主桥为630m五跨连续钢桁梁斜拉桥,采用三主桁三索面结构型式。3片主桁均由全焊桁片拼装而成。通过对备选方案的研究和比选,铜陵岸钢梁架设采用边跨全顶推法架设+中跨悬臂法架设方案,无为岸钢梁架设采用边跨部分拖拉法架设+中跨悬臂法架设方案,中跨合龙采用桁片整体合龙方案。在4号桥塔墩设置顶推平台和顶推装置,将铜陵岸边跨和次边跨钢梁分段安装、分次顶推至全部就位,然后将中跨钢梁悬臂架设至合龙口;在2号墩前方设置安装平台、1号墩墩顶布置拖拉装置,将无为岸边跨和部分次边跨钢梁分段安装、分次拖拉至全部就位,然后将3号墩前后两侧钢梁双悬臂架设至边跨合龙,再将剩余中跨钢梁单悬臂架设至跨中合龙口;最后吊装合龙段桁片进行中跨合龙。 相似文献
11.
滨州黄河公铁两用大桥主桥上部结构设计 总被引:3,自引:3,他引:3
滨州黄河公铁两用大桥主桥采用(120+3×180+120)m的钢桁架桥。钢梁主体为栓焊结构,主桁采用Q370qE(14MnNbq)钢,桥面系和联结系等采用Q345qE钢,辅助结构采用Q235qC钢。主桥钢梁采用拼装式节点设计,主桁弦杆采用箱形截面,腹杆采用箱形和工字形截面。采用伸长或缩短上弦杆节间长度的办法设置钢梁的预拱度。铁路及公路桥面系均采用纵、横梁体系。主桁上、下弦平面设有纵向联结系,平联斜杆采用交叉布置。主桥钢梁选择单向架设方法安装,除第1孔钢梁采用膺架法施工外,其余均利用临时墩辅助悬臂安装。 相似文献
12.
西堠门公铁两用大桥主桥为主跨1 488m斜拉-悬索协作体系桥,公铁平层布置。主缆垂跨比为1/6.5,斜拉索与吊杆交叉索共9对,纯悬吊段长452m。主梁采用流线型三箱分离结构,中间箱通行铁路,边箱通行公路,主梁全宽68m(含风嘴),中心线处梁高5m。桥塔为A形钢筋混凝土结构,高294m。斜拉索采用Φ7mm高强平行钢丝束,呈扇形布置。主缆空间布置,塔顶处横向中心间距6m,跨中处横向中心间距26.5m,标准抗拉强度2 000MPa。4号桥塔墩采用设置钢沉井基础,5号桥塔墩采用18根Φ6.3m大直径钻孔桩基础。金塘岛侧锚碇采用岩锚,册子岛侧锚碇采用嵌岩重力锚。理论分析和试验研究表明大桥具有良好的静、动力性能,能够满足高速铁路行车要求。 相似文献
14.
15.
郑州黄河公铁两用大桥主桥钢梁架设方案研究 总被引:3,自引:3,他引:3
郑州黄河公铁两用大桥主桥分2联布置,立面采用三主桁斜边桁的空间桁架形式,其结构新颖,架设施工难度大.经过多方案比选和研究,第1联钢桁梁采用多点纵向拖拉施工方案架设,第2联钢桁梁采用跨线龙门式吊机悬臂架设. 相似文献
16.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的钢箱桁组合梁斜拉桥。为确定该桥在施工期和运营期的抗风安全性,对其开展抗风性能研究。分别进行主梁节段模型、桥塔气弹模型、全桥气弹模型及并列拉索风洞试验,研究该桥在成桥状态及最不利施工状态的风致响应。结果表明:施工和成桥状态下,该桥主梁的颤振临界风速均远大于颤振检验风速,颤振稳定性较好;不同风速下均未观测到明显涡振,涡振性能满足规范要求;设计风速内,不同来流偏角下桥塔均未发生驰振及影响施工的大幅涡振,动力稳定性良好;实桥风速达到84.0m/s时主梁仍未发生颤振、横向屈曲、扭转发散等静力失稳现象,也未发现影响施工的涡振和大幅抖振;最不利工况下,下游拉索在风速37.4m/s时即出现一阶大幅尾流驰振,设置刚性连接杆可以有效抑制尾流驰振现象。 相似文献
17.
G3铜陵长江公铁大桥主桥为主跨988 m斜拉-悬索协作体系桥。江北、江南侧桥塔塔高分别为228.5、222.5 m,结构尺寸大,受力复杂,考虑桥塔受力、施工便捷性及主缆与斜拉索面协调布置等,确定采用C60混凝土门形桥塔。桥塔由上、下塔柱和上、下横梁组成,塔柱和下横梁为单箱单室截面,上横梁为开口槽形截面,索塔锚固区采用钢锚梁+混凝土齿块组合的索塔锚固结构,桥塔顶部主索鞍局部承压区采用间接钢筋网片加强并预留索鞍预埋件的布置空间。设计过程采用BIM技术优化局部设计细节,钢锚梁及钢牛腿等钢结构和混凝土结构外表面均采用防腐涂装体系进行耐久性设计。采用MIDAS Civil软件对桥塔整体受力进行分析,并对槽形断面上横梁基于经典理论、规范验算、实体有限元模型论证其结构安全性;基于ANSYS板壳有限元模型,研究不同板厚下钢锚梁锚下加劲板剪应力集中系数,以指导钢锚梁加劲板设计。桥塔塔柱采用支架法和爬模法施工,上、下横梁均采用支架法与塔柱异步施工。 相似文献
18.
19.
为评估航道桥下部结构的船撞安全性,以遭受船撞的某内河航道桥为研究对象,采用有限元方法和相关规范计算受撞击的5号桥墩自身水平抗力、船撞力、墩顶位移,并从墩顶位移和桥墩抗力两方面对受撞桥墩的安全性进行评估。结果表明:5号桥墩的横桥向和顺桥向抗力均由桩基强度控制,分别为2528 kN和1142 kN;事故船撞击工况下,墩顶最大横桥向和顺桥向位移分别为7.6 mm、13.4 mm,满足位移限值要求;沿横桥向和顺桥向的船撞安全系数分别为1.67和0.94,顺桥向的自身抗力不足以抵抗瞬时船撞力,导致桥墩桩基础受损,建议采用增大截面法对受损桩基础进行加固补强,并设置独立防撞墩以保障桥梁结构安全。基于分析过程,总结了桥梁下部结构船撞安全评估的一般流程。 相似文献
20.
桥梁建设在一定范围内会造成工程局部河段水动力条件的改变,对通航条件会带来一定的影响。以马鞍山长江公铁大桥为例,利用建立的物理模型,研究了工程河段水流运动特性,并重点分析了桥区河段的流速、流向及汊道分流比等变化情况,模拟建桥后对工程河段水动力条件的影响。研究表明:推荐桥跨布置方案实施后,在各级流量条件下,桥区河段桥轴线上游水位有所壅高、流速略有减小,下游流速略有增加,桥位下游近岸流速有所增加,但幅度不大,对本河段内汊道分流比影响幅度均在0.3%以内,左岸侧下游的郑蒲港港区流速基本未变,建桥不会引起桥区河段水流条件发生明显改变,对通航水流条件影响较小。 相似文献