首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在总结和吸收既有研究成果的基础上,以铺设CRTSⅡ板式无砟轨道的高速铁路简支梁桥为工程背景,对地震作用下高速铁路列车—无砟轨道—桥梁的动力响应及列车走行安全性进行系统研究,提出地震时不同条件下高速列车在桥上安全运行限速  相似文献   

2.
桥梁结构刚度对高速列车—轨道—桥梁耦合系统的动力学特性具有重要的影响,直接关系到桥上列车的行车安全性和运行平稳性。基于列车—轨道—桥梁动力相互作用理论,以高速铁路常用的简支箱梁桥和双块式无砟轨道为研究对象,采用列车—轨道—桥梁动力学仿真通用软件TTBSIM2.0,研究桥梁结构刚度对高速列车—轨道—桥梁耦合系统动力性能的影响规律。结果表明:当桥梁梁体的刚度或者桥墩的横向刚度不足时,车辆和桥梁的相关动力性能指标将随着刚度的减少而急剧增大,严重影响列车过桥时的安全性和平稳性;当梁体垂向刚度不足时,有可能会引发车桥共振现象;当桥梁结构刚度满足设计规范要求时,车桥系统动力响应指标随刚度变化不明显,此时行车速度和轨道不平顺成为影响行车安全性和平稳性的主要因素。  相似文献   

3.
为了解决低墩桥梁造价高,传统路基填料耗费多、占地面积大等难题,提出新型“箱式路基”结构。然而在高速铁路运营过程中地基不可避免会发生不均匀沉降,影响箱式路基服役性能和列车的安全运行。为确定新型箱式路基结构的沉降限值,从轨道结构受力变形和列车走行性2方面研究了地基沉降对箱式路基静、动力学特性的影响。考虑有砟和无砟2种轨道形式,根据箱式路基结构特点确定了错台、折角、对折和横向错位4种沉降类型;通过建立轨道-箱式路基非线性有限元模型,分析了不同沉降类型和沉降幅值下的扣件竖向力和10 m弦长矢度值;建立列车-轨道-箱式路基耦合动力学模型,采用联合仿真方法分析了不同沉降类型、不同沉降幅值和不同行车速度下的列车动力响应;综合静力、动力计算结果并结合规范得出了箱式路基沉降限值。研究结果表明,对于有砟轨道-箱式路基结构,除350 km/h错台沉降工况下的沉降限值由动力指标中的轮重减载率控制外,其他工况下的沉降限值均由静力指标中的10 m弦长矢度值控制;对于无砟轨道-箱式路基结构,其沉降限值不受动力指标控制,错台、横向错位沉降限值由扣件竖向力控制,折角、对折沉降限值由10 m弦长矢度值控制。有砟轨道-箱式...  相似文献   

4.
高速列车荷载作用下无砟轨道-路基-地基的动力响应是高速铁路设计、施工和运维普遍关注的问题。为了较好地掌握高速列车荷载作用下的无砟轨道、路基以及地基各结构的动力响应,采用实体单元对无砟轨道结构、路基和地基进行建模,考虑扣件系统的5层垫片和弹条,以超弹性材料本构关系模拟橡胶垫片的大变形行为,以三维黏弹性静-动力统一人工边界模拟无限地基,以静动力顺序分析模拟路基和轨道的建造过程,以实测轮轨力模拟列车高速运行时产生的激励,构建高速列车荷载作用下无砟轨道-路基-地基精细化有限元模型,采用实测数据,从动位移、动应力和动应变三方面对模型进行验证。研究结果表明,所建模型间接地考虑了空气和轨道不平顺对高速运行列车荷载的影响,考虑了扣件系统多层垫片间接触压力的传递和扩散,能很好地模拟列车荷载作用下无砟轨道-路基-地基系统的动力响应,与实测结果吻合很好。高速列车荷载作用下基床表层的动应力小于20 kPa,动应变处于10με量级,表明路基处于小应变和弹性变形状态。该模型可用于深入研究高速列车荷载作用下无砟轨道-路基-地基的动力学行为,为高速铁路无砟轨道结构及路基设计、优化提供一种有效的计算分析手段。  相似文献   

5.
重载铁路桥上无砟轨道动力学选型研究   总被引:1,自引:1,他引:0  
为给孟加拉帕德玛大桥铁路连接线桥上无砟轨道结构选型提供依据,基于车辆-轨道耦合动力学理论,建立重载货车-无砟轨道-桥梁耦合动力学模型,分析不同轴重货车通过桥上不同类型无砟轨道时的动力响应。结果表明:随着列车轴重的增大,桥上无砟轨道部件的动力响应明显增大;从降低轨道结构位移的角度考虑,优先选取现浇板式无砟轨道和单层长枕埋入式无砟轨道等单层无砟轨道结构;从降低轨道与桥梁的接触应力及桥梁振动加速度的角度考虑,应优先选取单元板式无砟轨道和长枕埋入式无砟轨道等双层无砟轨道结构。重载铁路桥上无砟轨道选型应综合考虑桥上无砟轨道的动力特性、线路特点及其与相关专业的接口等因素综合确定,相关成果可为重载铁路桥上无砟轨道选型提供参考。  相似文献   

6.
根据列车脱轨能量随机分析理论,实现高速铁路无砟轨道桥梁上的高速列车脱轨全过程分析,计算高速列车抗脱轨安全系数。在不考虑列车纵向冲击,仅考虑列车脱轨摇摆力作用下,推导出高速铁路桥梁防撞墙受力计算公式。结果表明:高速列车在设计车速下的抗脱轨安全系数为2.0以上,脱轨摇摆力为630kN,防撞墙所受到的撞击力为33 002.4kN。鉴于高速铁路无砟轨道桥梁上的高速列车运行安全性完全有保障,且即使有意外情况发生,防撞墙亦无法防止列车脱轨后冲出桥面,因此,建议取消防撞墙。  相似文献   

7.
研究目的:大跨度桥梁铺设无砟轨道已成为我国扩大无砟轨道应用范围的一大技术难题,本文以崔家营汉江特大桥主桥为工程实例,结合桥梁变形曲线及车桥耦合动力响应分析结果,提出大跨度桥梁铺设无砟轨道技术难点、技术要求以及评价指标,并得出相应的分析结果。研究结论:(1)崔家营汉江特大桥(135+2×300+135) m混凝土刚构拱竖向变形、曲率半径、竖向残余徐变变形、梁端变形、墩台沉降值均满足要求;(2)高速列车作用下桥梁动力响应均满足要求,具有良好的动力特性及列车走行性,安全性和乘坐舒适性均满足要求;(3)温度和徐变作用下竖向变形属于多波不平顺,300 m弦高低不平顺已超出规范允许值;(4)本研究成果可为今后类似大跨度桥梁铺设无砟轨道适应性分析提供参考。  相似文献   

8.
CRTS-Ⅰ型板式无砟轨道线路路基不均匀沉降限值研究   总被引:3,自引:0,他引:3  
基于列车—轨道耦合动力学理论,考虑无砟轨道各部件间及无砟轨道与路基间接触状态非线性,建立列车—板式无砟轨道—路基三维非线性有限元耦合动力学模型,进行自重荷载、轨道中长波随机不平顺、轨道短波随机不平顺、路基不均匀沉降荷载、无砟轨道板温度梯度荷载共同作用下,高速铁路CRTS-Ⅰ型板式无砟轨道路基不均匀沉降限值研究。结果表明:无砟轨道板温度梯度荷载对无砟轨道各部件受力均有较明显的影响,因此在进行无砟轨道线路路基不均匀沉降限值研究时有必要同时考虑无砟轨道板温度梯度荷载的影响;路基上CRTS-Ⅰ型板式无砟轨道线路的路基不均匀沉降限值由底座板疲劳破坏控制,路基不均匀沉降幅值达到7mm时无砟轨道底座板的最大拉力达到疲劳破坏限值1.674MPa,因此建议高速铁路CRTS-Ⅰ型板式无砟轨道路基的不均匀沉降限值为7mm/20m。  相似文献   

9.
为研究制动荷载作用下桥上无砟轨道动力响应问题,建立车辆子系统模型和无砟轨道-桥梁子系统模型。根据高速列车制动减速度特性曲线确定列车制动力,利用Hertz理论求解轮轨力,通过交叉迭代法求解有限元数值方程。以4节编组的CRH2型动车组在桥上无砟轨道制动为例,进行系统动力响应分析。研究结果表明:轨道、桥梁结构的纵竖向位移和加速度均逐层递减,梁端处轨道结构的竖向振动比跨中处大;列车制动过程中列车速度逐渐减小引起轨道结构的竖向动力响应也减小;列车停车后,轨道结构和桥梁的纵向位移反向突变、纵向加速度突变,随后都有自由衰减的趋势;列车停车瞬间,列车和桥梁出现纵向最大振动。研究成果可为桥上无砟轨道的设计提供理论支持。  相似文献   

10.
研究目的:高速铁路预应力桥梁会出现徐变上拱,而高速铁路对线路平顺性要求高,预应力桥梁徐变上拱引起的不平顺对高速列车-纵连板式无砟轨道-桥梁耦合系统有何影响,是工程界十分关注的问题。本文基于列车-轨道耦合动力学理论,建立考虑无砟轨道-桥梁系统各部件间接触状态非线性的高速列车-纵连板式无砟轨道-桥梁三维有限元耦合动力学模型并进行相应验证,运用所建模型,对列车在桥上纵连板式无砟轨道线路桥梁徐变上拱地段高速行驶时耦合系统的动力特性进行研究,旨在探讨其影响规律。研究结论:(1)桥梁徐变上拱对车体振动加速度影响非常显著,对桥梁振动加速度虽有影响,但不太显著;(2)桥梁徐变上拱对最大轮轨力、钢轨最大正弯矩、扣件最大拉力、轨道板和底座板纵向最大拉应力、CA砂浆最大压应力均有一定的影响,但影响规律不一,对最大轮轨力影响比较小,而对钢轨最大正弯矩、扣件最大拉力、轨道板和底座板纵向最大拉应力、CA砂浆最大压应力影响则比较大;(3)桥梁徐变上拱引起的无砟轨道-桥梁间局部脱空对高速列车-纵连板式无砟轨道-桥梁耦合系统动力特性有显著影响;(4)本研究成果可为高速铁路桥上纵连板式无砟轨道线路徐变上拱大小控制提供理论依据。  相似文献   

11.
基于列车—轨道—桥梁耦合动力学理论、无砟轨道与桥梁间纵向相互作用理论及无砟轨道温度场和温度效应理论,建立考虑服役期间无砟轨道钢筋与混凝土的相互作用、无砟轨道混凝土的开裂与闭合效应、无砟轨道荷载时变特性共同作用的桥上纵连板式无砟轨道疲劳寿命预测方法。以高速铁路32m多跨简支箱梁桥上无砟轨道为例,运用该方法研究组合荷载下桥上纵连板式无砟轨道的疲劳特性。结果表明:为了较准确地预测服役期间桥上纵连板式无砟轨道的疲劳特性,必须同时考虑列车荷载、温度荷载及温度梯度荷载的共同作用;桥上纵连板式无砟轨道的疲劳寿命由梁端处的轨道控制,梁端处轨道板底面混凝土和底座板顶面混凝土更易发生疲劳破坏;气候环境和无砟轨道裂缝间距对桥上纵连板式无砟轨道各部件的疲劳特性有很大影响,武汉地区无砟轨道的轨道板混凝土、底座板钢筋、底座板混凝土的疲劳寿命分别是哈尔滨地区的2.5,3.9和222.6倍,当裂缝间距由2倍扣件间距变为1倍时,无砟轨道钢筋的疲劳寿命增加10倍以上。  相似文献   

12.
考虑非一致地震输入的车-桥系统动力响应分析   总被引:1,自引:0,他引:1  
针对地震对列车在高速铁路桥梁上走行安全性的影响,将桥梁在地震作用下的运动方程和车辆振动方程通过桥梁子系统与车辆子系统间的非线性轮轨接触关系联系起来,建立可考虑行波效应影响的长大跨度桥梁—列车耦合系统的地震反应分析模型。利用车—桥系统地震反应分析程序,对高速列车在不同特征地震荷载作用下通过某高速铁路连续梁桥进行仿真分析,研究列车速度和地震波行波效应对车—桥系统动力响应的影响。研究结果表明:地震波行波效应对车—桥系统的振动响应有重要影响,并不总是地震波行波速度越大,车辆的动力响应的计算结果越接近一致激励时的相应值;在进行大跨度连续梁桥车—桥系统的地震反应分析时,应按桥址处的实际场地土特性考虑地震波行波效应的影响;地震荷载作用时车体的横向振动加速度以及各项安全评价指标均随列车速度的提高而增大,在评价地震作用下高速铁路连续梁桥上列车的走行安全性时,必须考虑列车运行速度的影响,给出了确保地震发生时高速列车在桥上安全运行的临界速度限值。  相似文献   

13.
针对高铁地震预警系统中警报阈值及其处置策略问题,设计完成高速铁路列车-无砟轨道-桥梁缩尺模型、列车-无砟轨道-路基缩尺模型及列车-有砟轨道-路基缩尺模型的振动台试验,研究了列车的脱轨现象,并用模型试验验证了数值仿真分析方法的正确性。在此基础上,通过开展动力学仿真计算,提出地震作用下高速列车安全运行的速度阈值。研究结果表明:无论是桥梁还是路基结构,CHY004地震波首先出现脱轨系数超标和轮轨分离现象,ALS地震波次之,安评地震波最后;高速列车安全运行速度阈值表现为无砟轨道路基过渡段32 m简支梁桥。从行车安全性指标来看,脱轨系数控制的安全运行速度阈值对地震动加速度变化最为敏感,呈反比例关系。最后,基于相关规定,建议高铁地震预警系统警报阈值分三级设置,即当40 gal≤预测或计测的峰值地震动加速度a80 gal时,限速160 km/h,以偏安全考虑;当80 gal≤a120 gal时,紧急停车;当a≥120 gal时,紧急停车并接触网断电。  相似文献   

14.
在吸收国内外研究成果的基础上,建立能够考虑无砟轨道—路基系统各部件间接触状态非线性的列车-路基上板式无砟轨道三维有限元耦合动力学模型,并对建立的三维有限元耦合动力学模型进行相应验证。运用建立的耦合动力学模型,对列车在路基上板式无砟轨道线路上高速行驶时,在列车荷载和无砟轨道温度梯度荷载共同作用下,列车-路基上板式无砟轨道耦合系统动力特性进行研究。研究结果表明:无砟轨道温度梯度荷载对列车-路基上板式无砟轨道耦合动力学系统轮轨力特性影响很小,但对无砟轨道各部件动力特性有显著影响,在进行无砟轨道各部件动力特性研究时,有必要考虑无砟轨道温度梯度荷载的不利影响;对于Ⅱ型板式无砟轨道,无砟轨道温度梯度荷载对列车-路基上板式无砟轨道耦合动力学系统动力特性影响与裂缝间距有很大关系,裂缝间距越小,其影响越小。  相似文献   

15.
研究目的:为研究温度作用下大跨度拱桥轨道静态平顺性,以及轨道温度变形对行车动力响应的影响,以目前世界最大跨度的钢箱提篮拱桥南广高速铁路西江桥为研究对象,基于梁轨相互作用模型计算温度变形下轨道静态高低不平顺校核值,并与轨道静态不平顺验收指标进行对比;将温度作用引起的轨道变形叠加到轨道不平顺样本中,利用自主开发的TRBF-DYNA软件开展高速铁路大跨度拱桥车-桥耦合振动及列车走行性分析。研究结论:(1)温度作用下桥面会发生较大竖向变形,导致钢轨变形300 m弦长高低不平顺指标超过轨道静态验收标准;(2)考虑温度变形后,桥梁动力响应及列车行车安全性指标和乘坐舒适度指标变化幅度不大,且均满足现行规范要求;(3)建议大跨度桥梁轨道变形静态验收时,以竖曲线半径指标替代300 m弦长验收指标,并辅以车桥耦合动力响应分析进行综合判断;(4)本研究成果可为完善大跨度桥上轨道变形验收指标提供参考。  相似文献   

16.
轨道不平顺不仅是引起列车和轨道振动的主要激扰,也是影响列车安全平稳运行的重要因素。为分析中国高速铁路轨道不平顺谱的特性及其对列车运行的影响,采用移动单元法建立考虑离散支撑的无砟轨道-车辆耦合模型,将逆傅里叶变换得到的中国轨道不平顺谱时域样本作为轮轨激励输入,通过编程数值计算分别研究列车速度、不平顺幅值和波长对轨道-列车系统动力响应的影响。研究表明:基于移动单元法建立的无砟轨道-车辆耦合模型的计算结果与有限元模拟结果吻合良好,移动单元模型准确可靠;轨道高低不平顺的幅值和波长特性均对系统的竖向动力响应有着显著影响,随着幅值增大和较短波长成分增加,轨道位移和轮轨接触力明显增大,其中2 m左右的不平顺波会对轮轨动力特性产生显著影响;此外,较高的车速会加剧系统的竖向动力响应。  相似文献   

17.
基于列车—轨道耦合动力学理论,建立能够考虑无砟轨道-路基系统各部件间接触状态非线性的列车-路基上板式无砟轨道三维有限元耦合动力学模型,并对建立的三维非线性有限元耦合动力学模型进行相应的程序验证。运用建立的耦合动力学模型,对列车在路基上无砟轨道线路上高速行驶时,在路基不均匀沉降作用下,列车-路基上无砟轨道耦合系统动力特性进行研究。研究结果表明:(1)路基不均匀沉降对车体振动加速度影响极大,路基不均匀沉降对车体振动加速度的影响与无砟轨道类型关系不大;(2)路基不均匀沉降对无砟轨道各部件动力特性有一定的影响,影响小于对车体振动加速度的影响,路基不均匀沉降对无砟轨道各部件动力特性的影响与无砟轨道类型有一定的关系,总体来讲,路基不均匀沉降对I型板式无砟轨道动力特性的影响要大于对双块式及Ⅱ型板式无砟轨道的影响。  相似文献   

18.
为分析桥上有砟轨道结构在重载列车作用下的竖向动力响应,基于ANSYS建立有砟轨道—桥梁系统动力分析有限元模型,将列车荷载简化为集中力,分析研究中—活载及和谐号双机重载列车移动活载作用下桥梁和轨道结构的竖向位移和加速度动力响应。研究结果表明:轨道和桥梁结构跨中竖向位移和加速度响应在HXD1+HXD3+C80作用下最大,最大值为12.60 mm和3.27 mm/s~2,挠跨比为3.94×10~(-4),均小于规范中40 mm,350 mm/s~2和2.5×10~(-3)的要求;行车速度对轨道桥梁结构竖向位移响应影响很小,竖向加速度随着行车速度的增大而增大;增大桥梁刚度可以降低轨道桥梁结构系统的竖向位移和加速度响应,提高行车稳定性和乘客的舒适度;对既有铁路有砟轨道桥梁,应限定行车速度,采取相应的加固措施提高刚度以保证车—轨—桥系统的安全。  相似文献   

19.
研究目的:为研究不同刚度的高速铁路32 m简支箱梁在动车组列车作用下的工作状态,本文对6个图号的简支箱梁(优化前后的250 km/h有砟轨道、250 km/h无砟轨道、350 km/h无砟轨道)的实测梁体竖向挠跨比、自振频率及动车组作用下的动力响应数据进行分析。研究结论:(1) 32 m箱梁自振频率和挠跨比实测值大于设计值,截面优化后的竖向刚度与优化前相比均有所降低;(2)在同一型号动车组作用下,箱梁振动数值大小与梁体刚度大小呈反比;(3)设计速度250 km/h无砟轨道箱梁横向和竖向振动实测值最大,350 km/h无砟轨道箱梁刚度大于250 km/h有砟轨道箱梁但竖向动力响应数值相当,无砟轨道箱梁振动数值大于有砟轨道;(4)同一图号的32 m简支箱梁,当动车组轴重增大、桥上线路不平顺时,桥梁竖向动力响应与线路平顺状态时相比明显增大,会发生超过通常值的现象;(5)本文研究可为桥梁车桥耦合仿真计算、设计优化、运营性能评估提供参考。  相似文献   

20.
桥上无砟轨道越来越多地应用于高速铁路.目前,桥上无砟轨道结构动力计算理论还不够完善,现采用有限元方法,把移动荷载和轨道结构以及桥梁看成一个系统,对板式无砟轨道在移动荷载作用下的动力性能进行分析,并通过MATLAB编程实现,计算结果符合无砟轨道结构和桥梁基本原理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号