首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
新型UHPC—大纵肋波折板正交异性桥面板取消了顶板与纵肋焊缝,减少了横隔板与纵肋焊缝,为改善正交异性钢桥面板控制部位的疲劳性能提供了一个有效新途径。然而,由于波折板与横隔板保留横向焊缝,其疲劳风险仍然可能存在,故针对纵肋与横隔板位置的关键疲劳细节,采用数值分析并结合热点应力法对各参数影响下的轮载应力幅和疲劳寿命进行评估验证。结果表明,新型组合桥面板的大纵肋波折钢板及横隔板的疲劳寿命主要受弧形切口顶应力幅控制,施工时应加强切口打磨质量,防止疲劳开裂。另外,UHPC板厚增大、横隔板间距减小以及横隔板厚度加大时,各疲劳细节应力幅均有减小趋势,但加大纵肋高度或填充混凝土补强纵肋后,其各疲劳细节应力幅增减趋势并不一致。通过合理参数设计可使得各疲劳细节应力幅趋势均匀,获得优异的抗疲劳性能。  相似文献   

2.
针对压-压循环可不验算疲劳、横隔板弧形切口母材疲劳为面外反复变形所致、《公路钢结构桥梁设计规范》(JTG D64—2015)(以下简称《公路钢桥规》)疲劳损伤效应系数取值等认知或规定,以及服役背景工程横隔板弧形切口处补强细节尺寸的确定,通过服役背景工程的疲劳细节、交通载荷与病害特征等信息汇集,服役背景工程多种补强方案、新建背景工程等轮载有限元分析与多规范疲劳验算比较,力求揭示横隔板弧形切口母材疲劳开裂机理,确定其合理的补强细节。研究结果表明:横隔板弧形切口处母材的轮载应力主要为膜压应力,轮载压应力幅耗费横隔板母材疲劳寿命;《公路钢桥规》疲劳损伤效应系数取值或许偏大;弧形切口形状对横隔板与U肋连接处及横隔板母材轮载应力及其峰值影响较大,弧形切口半径不能太小,且其与U肋交点的切线与U肋腹板的夹角宜取小值;横隔板母材裂纹较短者(优化后,裂纹自然切除)可采用"弧形切口优化"的处治方案,较长者可采用"止裂孔+弧形切口优化+双面补强钢板"的处治方案;补强钢板对补强以外稍远部位应力影响可忽略,补强钢板尺寸可统一,其边缘距顶板可取65mm,已覆盖裂纹全长,其边缘距U肋宜取30mm,太近会导致横隔板与U肋连接焊缝处应力增大,其厚度宜取4mm,过厚将在补强钢板边缘处母材上形成新的疲劳敏感点。  相似文献   

3.
为研究钢桥面板疲劳裂纹耦合扩展机理,建立焊接分析有限元模型,对纵肋-顶板连接细节、纵肋-横隔板连接细节的焊接全过程进行数值模拟,基于扩展有限元方法建立钢桥面板数值断裂力学模型,对疲劳敏感细节裂纹静、动态扩展行为进行分析。焊接过程分析结果表明:纵肋-顶板连接焊缝区域、纵肋-横隔板焊缝端部区域均存在较大的残余拉应力,峰值接近钢材屈服强度;横隔板挖孔边缘存在切向残余拉应力,峰值约为200 MPa。疲劳裂纹扩展行为分析结果表明:纵肋-顶板连接细节在车辆荷载单独作用下以受压为主,考虑残余应力场作用后细节处于拉-拉应力状态,疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹;车辆偏载作用下纵肋产生扭转变形,计入残余应力后纵肋-横隔板连接焊缝焊趾受拉开裂,萌生于纵肋焊趾、向纵肋腹板扩展的疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹,萌生于纵肋-横隔板连接焊缝横隔板侧焊趾和横隔板挖孔边缘的疲劳裂纹为Ⅰ-Ⅱ型复合裂纹;纵肋对接细节的疲劳裂纹为Ⅰ型裂纹,车辆荷载作用下以受拉为主,位于纵肋底板弧形过渡区的裂纹相较于纵肋底板中间区域具备更强的扩展能力。  相似文献   

4.
正交异性钢桥面板足尺疲劳试验   总被引:3,自引:0,他引:3  
以某大跨径斜拉桥采用的正交异性钢桥面板为工程背景,进行钢桥面板疲劳性能试验研究,足尺疲劳试验循环次数累积达到1 020万次.试验结果表明:加劲肋与盖板连接部位出现了纵向疲劳裂纹;加劲肋与横隔板连接的焊缝端部出现了在焊趾处萌生并沿加劲肋腹板扩展的疲劳裂纹;受焊接残余应力影响,处于疲劳荷载压应力区的腹板与横隔板连接焊缝端部也萌生了疲劳裂纹;横隔板挖孔部位无疲劳裂纹;若以测点应力发生变化为疲劳失效判据,则加劲肋与横隔板连接端部的疲劳细节高于AASHTO中D类和Eurocode的63类细节等级,加劲肋与盖板连接的疲劳细节高于AASHTO中D类和Eurocode的71类细节等级;若以出现疲劳裂纹为疲劳失效判据,则其疲劳细节高于AASHTO规范中D类和Eurocode的80类细节等级.  相似文献   

5.
为解决正交异性钢桥面纵肋-横隔板接头疲劳开裂问题,根据正交异性钢桥面构造特点,提出了一种疲劳性能良好的新型无切口正交异性钢-UHPC组合桥面,能简化制造工艺,提高经济性能。基于ANSYS数值分析平台建立双尺度有限元模型,采用欧洲规范疲劳荷载模型III开展纵桥向移动加载,获得了纵肋-横隔板接头在3种典型横向位置下的轮载热点应力响应曲线。结合轮载作用下的应力云图和变形图,揭示了构造细节力学机理,评估了疲劳性能,并探讨了构造参数的影响。应力响应曲线表明:纵肋-横隔板接头在轮载作用下的应力响应以受压为主,局部效应显著,纵桥向应力影响线短,因而可根据轮载应力响应曲线识别轴组中的单轴。应力云图和变形图表明:构造细节在轮载作用下出现了显著应力集中,因新型桥面横隔板截面削弱较小,横隔板侧应力梯度小于纵肋侧。纵肋-横隔板接头应力最大点均不在纵肋正底部位置,而是与纵肋中心线成一定角度。由于纵肋-横隔板接头与面板距离较大,UHPC层和面板厚度对其疲劳性能改善并不明显。增加横隔板厚度能减小横隔板侧应力幅,但会增加纵肋侧应力幅,横隔板厚度可取10 mm。增大纵肋腹部厚度可有效减小纵肋侧应力幅,16 mm的纵肋腹部厚度可使得纵肋-横隔板接头实现无限疲劳寿命。  相似文献   

6.
为了研究钢箱梁的疲劳性能,以某斜拉桥为背景,建立局部有限元模型,利用热点应力法,针对其钢箱梁三种方案的弧形切口及纵肋与横隔板焊缝处的疲劳细节进行计算分析。结果表明:对于纵肋与横隔板焊缝处的疲劳细节,采用6cm厚STC层应力幅改善作用最大,降幅为39%~69%,增加顶板和横隔板板厚最大降幅为19%;对于弧形切口疲劳细节,采用STC层应力幅降幅为14%~33%,增加顶板和横隔板板厚降幅为16%~45%。研究结果可为正交异性板的设计和疲劳分析提供参考。  相似文献   

7.
为研究超大跨径斜拉桥钢桥面板的疲劳损伤问题,本文以某斜拉桥为工程背景,对实桥进行了现场疲劳损伤监测与分析,并基于断裂力学的三维裂纹扩展模型,对钢箱梁顶板-U肋和横隔板-U肋等焊接细节进行了数值仿真与研究。结果表明:实桥顶板-U肋焊缝细节高应力幅(大于10MPa)循环次数与疲劳损伤度明显低于横隔板-U肋细节,横隔板-U肋焊缝最大应力幅达到75~90MPa,顶板-U肋焊缝最大应力幅为15~30MPa,横隔板-U肋焊缝细节处裂纹数量远大于顶板-U肋焊缝细节处裂纹数量;顶板-U肋焊缝裂纹在扩展过程中基本保持平面,裂纹扩展有先沿焊缝方向纵向扩展,再向深度方向扩展的趋势;横隔板-U肋焊缝焊趾处裂纹先沿初始裂纹深度方向在横隔板扩展,再向横隔板厚度方向扩展,焊趾处裂纹先向U肋厚度方向扩展,后沿初始裂纹长度方向顺桥向扩展;在初始裂纹尺寸与荷载条件相同的情况下,顶板-U肋焊缝焊趾处裂纹扩展速度大于焊根处裂纹扩展速度,横隔板-U肋焊缝焊趾处裂纹扩展速率大于横隔板焊趾处裂纹扩展速率。  相似文献   

8.
周维  于浩楠 《城市道桥与防洪》2021,(11):189-191,202
为系统探究纵肋与横隔板交叉细节的疲劳特性,以某斜拉桥钢桥面板为研究背景,利用ANSYS有限元软件,对2跨3纵肋节段疲劳模型进行了数值模拟.研究结果表明:当疲劳车轮载单侧前后轮中心线通过横隔板正上方时,纵肋与横隔板交叉细节的疲劳应力幅达到最大;在欧规疲劳车荷载下,围焊焊趾处疲劳应力幅为83.6 MPa,横隔板开孔圆弧线上的最大疲劳应力幅为120.2 MPa.  相似文献   

9.
现场监测能真实反映结构的构造细节、边界约束和桥面加载条件,是正交异性钢桥面板疲劳评价最合理有效的方法之一。基于某正交异性桥面板钢箱梁桥,通过监测随机车流下同一车道紧邻的2个横隔板上疲劳敏感构造细节的应力响应时程,对比2种不同弧形切口正交异性钢桥面板构造细节的应力响应;通过雨流计数法获取构造细节应力谱,再基于米勒线性累积损伤准则计算疲劳等效应力幅和等效加载次数;最后基于AASHTO LRFD规范条文计算相关构造细节的疲劳寿命。研究结果表明:横隔板弧形切口构造细节总应力是面内应力分量主导,小弧形切口峰值应力时面外应力对总应力的比不大于23%,而大弧形切口仅略减小到20%,但大弧形切口削弱了横隔板腹板,使得传递面内竖向应力的面积减小,反而增大了弧形切口构造细节的应力,因而大弧形切口构造细节的疲劳寿命仅为10.6年,低于小弧形切口的14.2年;对纵肋-横隔板(Rib-to-floorbeam,RF)焊缝构造细节而言,大弧形切口减轻了RF之间的相互约束,能一定程度减小RF纵肋侧和RF横隔板侧的应力响应;但增大了RF围焊处因弯曲产生的压应力,从而导致横向泊松效应在该构造细节处产生大的二次应力;采用小弧形切口时估计的纵肋-横隔板焊缝构造细节的疲劳寿命大于100年,而采用大弧形切口对应寿命仅为31年。研究结果可为正交异性钢桥面板抗疲劳设计和加固提供有益的参考。  相似文献   

10.
为了解车轮荷载作用对正交异性钢桥面板典型疲劳细节的影响,以长门特大桥为背景,采用有限元法建立正交异性钢桥面板节段模型及易开裂部位的子模型,分析在不同横向荷载分布下3处典型疲劳细节受力及面内外变形,得到各细节最不利加载位置。对最不利位置进行加载,分析疲劳裂纹尖端应力强度因子变化规律,研究不同疲劳细节裂纹类型及扩展能力。结果表明:单轮荷载作用下,横隔板弧形缺口位置会发生面内外变形,顶板-U肋焊根处以面外变形为主,横隔板间的顶板-U肋焊缝焊根位置面外变形最大。在裂纹较短时,随着长度的增加,弧形缺口裂纹从张开型裂纹逐渐转向张开型、滑开型混合裂纹,且横隔板处的顶板-U肋焊根裂纹为复合型裂纹,横隔板间的顶板-U肋焊根裂纹为张开型裂纹。横隔板弧形缺口裂纹和顶板-U肋焊缝焊根裂纹的尖端应力强度因子的最大值,分别出现在裂纹长度为20 mm和40 mm附近,该处裂纹较容易继续扩展。  相似文献   

11.
正交异性钢桥面板的疲劳开裂问题是制约桥梁工程可持续发展的关键难题,亟需发展具有高疲劳抗力的正交异性钢桥面板。同时引入纵肋与顶板新型双面焊构造细节和纵肋与横隔板新型交叉构造细节2类构造细节,提出了一种高疲劳抗力钢桥面板,设计了2个足尺节段模型,通过模型试验确定了纵肋与顶板传统单面焊构造细节和新型双面焊构造细节的疲劳开裂模式和疲劳性能,采用扫描电子显微镜(SEM)确定了单面焊构造细节焊根和双面焊构造细节焊趾的初始微裂纹尺度;研究了纵肋与横隔板传统交叉构造细节和新型交叉构造细节的疲劳开裂模式。研究结果表明:纵肋与顶板传统单面焊构造细节的疲劳裂纹起裂于顶板焊根并沿顶板厚度方向扩展,其疲劳强度为98.7 MPa,新型双面焊构造细节的疲劳裂纹起裂于顶板内侧焊趾并沿顶板厚度方向扩展,其疲劳强度为123.2 MPa;传统单面焊构造细节焊根的初始微裂纹尺度显著大于新型双面焊构造细节焊趾的初始微裂纹尺度,初始微裂纹尺度的差异是2种开裂模式的疲劳抗力存在显著差异的主要原因;纵肋与横隔板传统交叉构造细节的疲劳裂纹起裂于纵肋腹板焊缝端部焊趾并沿纵肋腹板扩展,新型交叉构造细节的疲劳裂纹起裂于纵肋底板焊缝端部焊趾并沿纵肋底板扩展,2类构造细节的起裂次数基本一致,但新型交叉构造细节的疲劳裂纹扩展速率远低于传统构造细节;相同加载条件下,高疲劳抗力钢桥面板结构体系的疲劳寿命显著优于传统钢桥面板结构体系。  相似文献   

12.
鞠晓臣 《中国公路学报》2019,32(11):176-183
正交异性桥面板U肋-面板焊接接头为疲劳裂纹多发部位,为了提高U肋-面板焊接接头疲劳性能,分析目前规范中对该构造细节的疲劳设计要求以及疲劳问题依然存在的原因,在目前主要采用部分熔透焊形式的背景下,考虑引入全熔透焊接以期达到提高疲劳性能的目的。研究围绕一种全新的U肋-面板全熔透焊接接头的疲劳性能分别开展构造细节和节段足尺模型试验研究。试验结果表明:全熔透疲劳裂纹都是始于U肋内侧焊趾处,沿着U肋腹板厚度方向发展,部分熔透焊裂纹主要始于未熔透焊缝的焊根部位,沿焊喉方向发展,直至贯通整个焊喉,且在同样加载条件下,全熔透焊裂纹产生的加载次数明显高于部分熔透焊;全熔透焊的热点应力试验测试值与理论计算值基本一致,U肋焊趾部位应力集中明显,内侧受拉外侧受压,解释了疲劳裂纹起始点为U肋焊趾内侧;经回归计算得到热点应力疲劳强度为263.8 MPa;将足尺节段疲劳试验加载幅度对应的加载次数换算为公路桥梁规范单车轮轮载60 kN所对应的加载次数,2个试件加载次数都超过1.2亿次,且U肋-面板全熔透焊接接头依然没有疲劳裂纹产生,表明U肋-面板全熔透焊接接头具备优良的抗疲劳性能。  相似文献   

13.
为了深刻认识高疲劳抗力钢桥面板的疲劳特性,准确评估其结构体系的疲劳抗力,基于等效结构应力建立了考虑焊接微裂纹对钢桥面板疲劳性能劣化效应的结构体系疲劳抗力评估方法,并通过疲劳试验对所建立的评估方法进行了验证。在此基础上采用所建立的结构体系疲劳抗力评估方法对高疲劳抗力钢桥面板的疲劳开裂模式、疲劳抗力及其影响因素等相关关键问题进行系统研究。研究结果表明:焊接微裂纹的存在会显著降低钢桥面板的疲劳性能,导致主导疲劳开裂模式发生迁移;结构体系设计参数对纵肋与顶板双面焊构造细节和纵肋与横隔板新型交叉构造细节疲劳性能的影响有显著区别,其中纵肋与顶板双面焊构造细节的疲劳性能主要对顶板厚度的变化较为敏感,其疲劳性能随着顶板厚度的增加而显著提升,而纵肋与横隔板新型交叉构造细节的疲劳性能同时受多个参数的影响,其疲劳性能随着顶板厚度、横隔板厚度和纵肋高度的增大而提升,随着横隔板间距和纵肋底板与横隔板之间焊缝长度的增大而降低;传统钢桥面板的主导疲劳开裂模式为纵肋腹板与横隔板交叉构造细节围焊焊趾开裂,高疲劳抗力钢桥面板的主导疲劳开裂模式为纵肋底板与横隔板交叉构造细节纵肋焊趾开裂;相对于传统正交异性钢桥面板,高疲劳抗力钢桥面板结构实现了主导疲劳开裂模式的迁移,疲劳性能显著提高。  相似文献   

14.
正交异性钢桥面板的疲劳问题属于多疲劳失效模式下的结构体系疲劳问题,为研究其结构体系的疲劳失效模式和疲劳抗力,以典型的正交异性钢桥面板为研究对象,提出基于主导疲劳失效模式的结构体系疲劳抗力评估方法。由正交异性钢桥面板的重要疲劳失效模式入手,设计3组共8个足尺节段模型,通过疲劳试验研究确定纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节的重要疲劳失效模式及其实际疲劳抗力;基于所提出的结构体系疲劳抗力评估方法,探讨引入镦边纵肋和双面焊等新型构造细节条件下正交异性钢桥面板结构体系的疲劳抗力问题。研究结果表明:纵肋与顶板焊接细节主导疲劳失效模式为疲劳裂纹萌生于焊根并沿顶板厚度方向扩展,而纵肋与横隔板交叉构造细节主导疲劳失效模式为疲劳裂纹萌生于端部焊趾并沿纵肋腹板扩展;初始制造缺陷会显著降低正交异性钢桥面板重要疲劳失效模式的疲劳抗力并导致疲劳失效模式迁移;对于正交异性钢桥面板的结构体系而言,引入新型镦边纵肋与顶板焊接细节无法提高结构体系的疲劳抗力;而引入纵肋与顶板新型双面焊细节,可使结构体系的主导疲劳失效模式迁移至顶板焊趾或纵肋与横隔板交叉构造细节,结构体系的疲劳抗力得到显著提高。  相似文献   

15.
为研究钢桥面板疲劳开裂局部区域引入钢或高性能材料加固构件的装配式加固方法,以钢桥面板纵肋与横隔板交叉构造细节为研究对象,采用足尺模型试验对钢桥面板纵肋与横隔板交叉构造细节疲劳性能劣化及其疲劳开裂的栓接角钢装配式快速加固相关关键问题进行了试验和理论研究;基于断裂力学探究了纵肋与横隔板交叉构造细节三维疲劳裂纹的扩展特性、疲劳寿命预测及装配式快速加固方法的加固效果。研究结果表明:纵肋与横隔板交叉构造细节的疲劳裂纹萌生于焊趾并沿纵肋腹板进行扩展,其对结构力学特性的影响范围和程度随着裂纹的扩展而逐步加剧;加固后相应开裂部位关键测点和裂尖各测点的应力应变降幅分别达57%和80%,装配式加固构件与既有结构协同受力性能良好,能够有效抑制局部疲劳裂纹扩展;数值断裂力学分析表明,加固后裂尖应力强度因子降幅达90%,可有效抑制疲劳裂纹的进一步扩展。  相似文献   

16.
整体焊接节点钢桁梁具有广阔的应用前景,其疲劳性能由整体焊接节点所决定。以长清黄河大桥为研究对象,通过理论分析和两尺度疲劳破坏试验对钢桁梁整体焊接节点的疲劳性能进行了研究。首先通过全桥杆件内力分析和多尺度疲劳损伤分析确定了控制主桁疲劳性能的整体焊接节点位置及其控制构造细节;在此基础上设计了2类共21个试验模型,其中包括20个构造细节试样模型和1个足尺节段模型,进行了疲劳破坏试验,确定了整体焊接节点控制构造细节的主导疲劳开裂模式、应力集中系数和疲劳强度。研究结果表明:节点顶板、横梁上翼缘与节点板熔透对接焊连接细节是整体焊接节点疲劳性能的控制构造细节,其主导疲劳开裂模式为从节点板焊趾起裂并沿板厚扩展;实际受力模式下,控制构造细节中节点板焊趾应力集中系数为1.163,横梁上翼缘焊趾应力集中系数为1.789;2类试验模型的宏观疲劳裂纹起裂寿命均占总疲劳寿命的75%以上,故将2类试验模型的疲劳失效判据统一定义为出现宏观疲劳裂纹;基于此,2类试验模型所得到的控制构造细节疲劳强度等级基本一致;控制构造细节2种开裂模式名义应力疲劳强度等级均建议采用公路钢结构桥梁设计规范中的FAT80,热点应力疲劳强度均建议采用欧规中的FAT90。  相似文献   

17.
为了提高正交异性钢桥面板纵肋与顶板焊接构造细节的疲劳性能,提出了一种新型镦边纵肋与顶板连接构造细节,该构造细节通过局部镦厚与顶板连接部位的纵肋腹板,增大连接焊缝截面尺寸和局部刚度,从而减小该焊缝连接部位的应力集中程度,以实现提高纵肋与顶板焊接构造细节的疲劳性能的目的。作为一种新型焊接构造细节,其实际疲劳破坏模式和疲劳抗力均有待研究确定,为验证这一新型构造细节在改善纵肋与顶板焊接构造细节疲劳性能方面的有效性并确定其实际疲劳破坏模式和疲劳抗力,设计2组共7个足尺节段模型进行疲劳试验,对新型镦边纵肋与顶板焊接构造细节和传统纵肋与顶板焊接构造细节进行对比试验和理论研究。研究结果表明:控制2类构造细节的主导疲劳破坏模式均为萌生于焊根、沿顶板开裂的疲劳破坏模式;该疲劳破坏模式下新型镦边纵肋与顶板焊接构造细节和传统纵肋与顶板焊接构造细节的疲劳性能基本一致,新型镦边纵肋与顶板焊接构造细节对于该疲劳破坏模式下的实际疲劳性能无明显的改善效果;切口应力法适用于该构造细节焊根的疲劳性能评估,从便于工程应用的角度考虑,距离顶板焊趾5 mm处的应力值亦可作为纵肋与顶板焊接细节疲劳性能评估的依据。  相似文献   

18.
纵肋-面板(rib-to-deck,简称RD)双面焊是正交异性钢桥面板制造新技术。为研究该构造细节的轮载应力特征,在某大跨度钢箱梁斜拉桥上开展了横桥向3个典型轮载工况的控制加载试验,记录了卡车缓慢移动和跑车时毗邻的多个RD构造细节的应力时程,研究了RD构造细节轮载应力行为。通过建立正交异性钢桥面板模型,开展了RD双面焊构造细节的精细化有限元分析。现场试验表明:在横桥向3个典型轮载工况中,跨肋式加载是RD构造细节最不利加载工况,此时纵肋侧和面板侧均产生最大应力幅,且面板侧大于纵肋侧;同时,RD构造细节轮载应力的局部效应显著,横桥向当构造细节距离轮载中心大于1倍纵肋中心距后,其纵肋侧和面板侧的应力幅均很小,因此可忽略卡车左右轮和相邻车道卡车并行的应力叠加效应;在纵桥向,轮载对RD构造细节的加载效应也仅局限其所在前后横隔板之间的桥面;另外,横桥向轮胎覆盖的面板下方RD构造细节,其应力时程能分辨单轴,每个车轴产生一个应力峰;否则其应力时程只能识别轴组,一辆卡车通行产生的疲劳加载次数等于卡车轴组数。有限元分析不仅得到了与现场加载试验非常一致的结果,也表明RD构造细节外侧最大应力幅均大于内侧,因此轮载作用下内侧焊焊趾的疲劳抗力高于外侧焊。故对RD双面焊构造细节,基于现场试验获得的外侧焊构造细节应力响应,能给出RD构造细节疲劳性能的合理评价。  相似文献   

19.
钢桥面板的疲劳问题是制约钢结构桥梁可持续发展的关键难题,纵肋与顶板传统单面焊构造细节是控制钢桥面板疲劳性能、疲劳开裂危害最为严重的易损构造细节。以中国自主研发的纵肋与顶板新型双面焊构造细节为研究对象,研发了钢桥面板纵肋与顶板构造细节疲劳试验装置,参照近期中国典型重大工程的钢桥面板结构设计参数,在系统对比分析研究的基础上,设计12个构造细节疲劳试验模型和5个节段疲劳试验模型,通过疲劳破坏试验确定了纵肋与顶板新型双面焊构造细节的主导疲劳开裂模式和疲劳强度,探究了影响其疲劳性能的关键因素。研究结果表明:纵肋与顶板新型双面焊构造细节的疲劳强度显著高于纵肋与顶板传统单面焊构造细节,等效结构应力适用于纵肋与顶板新型双面焊构造细节的疲劳性能评估;实际熔透率不低于75%时多种焊接工艺条件下纵肋与顶板新型双面焊构造细节的主导疲劳开裂模式均为疲劳裂纹在顶板焊趾产生,并沿顶板板厚方向扩展,其名义应力疲劳强度高于90 MPa,等效结构应力疲劳强度高于100 MPa;制造缺欠是影响纵肋与顶板新型双面焊构造细节疲劳性能的关键因素;所研发的试验装置可通过构造细节模型实现对实际钢桥面板中纵肋与顶板焊接构造细节的准确模拟,准确获得纵肋与顶板构造细节疲劳性能。研究成果可为该长寿命新型构造细节的抗疲劳设计和工程实践提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号