首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为评价不同温拌改性沥青材料对沥青及沥青混合料性能的影响,文章对掺加温拌改性沥青材料Sasobit和材料A后的沥青胶结料进行了针入度、软化点、粘度试验,并对分别掺加了这两种材料的改性沥青混合料和基质沥青混合料进行了车辙试验、弯曲蠕变试验及冻融劈裂试验。试验结果表明:与基质沥青相比,改性沥青胶结料的针入度、粘度降低,软化点提高,且Sasobit的改性效果更好;与基质沥青混合料相比,改性沥青混合料的高温性能有较大改善,且不降低混合料的低温抗裂性及路用水稳定性。  相似文献   

2.
活性橡胶是一种新型沥青改性材料,能有效消耗废旧橡胶和磷矿工业废弃物。选择应用较为广泛的70#基质沥青、SBS性沥青,对掺加活性橡胶前后的沥青胶结料常规技术指标进行对比研究。在此基础上,通过系统的室内性能试验,进行掺加活性橡胶对普通沥青连续级配混合料与SBS改性沥青断级配混合料的性能影响分析。研究结果表明,掺入活性橡胶后,70#基质沥青与SBS改性沥青胶结料针入度、延度明显降低,普通沥青连续级配沥青混合料与SBS改性沥青断级配混合料的高温稳定性、抗水损害性能和低温抗裂性能得到改善。  相似文献   

3.
为研究PPA(多聚磷酸)/SBS复合型沥青混合料路面性能,文章提出了PPA/SBS复合改性沥青混合料的原材料选择和混合料设计方案,并通过沥青混合料高温、低温及水稳试验分别对比分析了基质沥青混合料、SBS单一改性沥青混合料及PPA/SBS复合改性沥青混合料的路用性能。研究结果表明:相比于基质沥青,单一掺加SBS改性剂均能提高沥青混合料的高温性能、低温性能和水稳定性,而在SBS改性沥青基础上再掺加PPA可以进一步提升沥青混合料的高温稳定性,且在一定范围内随着多聚磷酸掺量的增加其混合料高温稳定性越高,但对混合料的低温性能和水稳定性没有显著影响。  相似文献   

4.
文章对SBS掺量为6%的改性沥青混合料AC-16和基质沥青混合料进行马歇尔稳定度试验和车辙试验对比,分析沥青混合料的高温抗车辙性能。结果表明:随着温度升高,沥青混合料的稳定度下降,但SBS改性沥青混合料稳定度的降低速度低于基质沥青混合料;在沥青混合料试样DS动稳定度不断增加时,RD车辙深度和车辙变形的时间累计A表现为不断缩小,SBS改性沥青混合料AC-16的高温性能更适于广西高温潮湿多雨的气候特点。  相似文献   

5.
文章通过对沥青混合料掺加聚酯纤维的研究,分析了聚酯纤维增强沥青混合料的马歇尔稳定度、水稳定性、高温稳定性及低温抗裂性,并与基质沥青混合料、SBS改性沥青混合料进行试验对比,指出聚酯纤维对沥青混合料路用性能的影响,为利用纤维加强沥青混合料研究提供参考。  相似文献   

6.
通过沥青DSR试验及小梁弯曲疲劳试验对埃索90#基质沥青、SBS、SBR、SBS/SBR复合改性沥青掺加抗剥落剂后的疲劳性能进行对比试验研究,结果表明,复合改性沥青及沥青混合料具有优良的抗疲劳性能。  相似文献   

7.
文章以道路材料实验室为依托,通过中海油AH-70#基质沥青、布敦岩沥青(BRA)、SBS改性沥青混合料的对比试验,研究以干法掺入不同BRA掺量的改性沥青混合料的综合路用性能。结果表明:布敦岩沥青混合料的高温稳定性、水稳定性和低温性能明显优于基质沥青混合料;当BRA掺量为3%时,混合料各项指标均已接近或达到了SBS改性沥青沥青混合料的性能,而当掺量从3%增加到4%时,混合料的高温性能、水稳性能均有所降低,因此,工程应用中的布敦岩沥青掺量宜在3%附近。  相似文献   

8.
为研究纳米复合天然岩沥青(RCA)改性对基质沥青及其混合料性能的影响,文章通过室内试验研究了不同纳米TiO_2掺量下RCA改性沥青及其混合料的路用性能,并与目前使用较普遍的SBS改性沥青、BRA改性沥青和基质沥青以及相应的混合料进行对照分析。结果表明,RCA改性对沥青混合料的综合路用性能最好,特别是对高温抗车辙能力提高最为明显,且随着纳米TiO_2掺量的增加,各项性能指标均有所提高,但是其增速逐渐变缓,纳米TiO_2对混合料路用性能的影响逐渐变弱。综合考虑性能变化规律和经济效益,推荐RCA改性中纳米TiO_2的合理掺量为1%。  相似文献   

9.
为研究沥青路面常用AC-20沥青混合料的动态模量变化规律,文章选用70~#基质沥青、橡胶沥青和SBS改性沥青三种沥青材料,采用相同技术指标的粗、细集料和矿粉配制3种AC-20沥青混合料并进行简单性能试验(SPT)动态模量研究。同时运用时间-温度等效原理,采用Boltzmann函数进行拟合,得到3种沥青混合料的动态模量和相位角主曲线。研究结果表明,橡胶沥青和SBS改性沥青均可改善沥青混合料的力学性能;AC-20(SBS)和AC-20(AR22%)沥青混合料主曲线变化趋势一致,但有所区别,SBS改性沥青混合料高温稳定性与低温抗裂性优于橡胶沥青混合料。  相似文献   

10.
为分析纳米ZnO材料在改性沥青方面的应用效果,验证其沥青混合料的综合路用性能,文章通过制定相应的纳米ZnO改性沥青、纳米复合ZnO/SBS改性沥青的试验方案,利用车辙试验、SPT简单剪切试验、小梁弯曲试验和冻融劈裂试验等分析四种不同类型沥青混合料的路用性能。结果显示:纳米ZnO材料显著改善了70~#基质沥青的高温抗车辙性能、低温抗裂性能和水稳定性能,其中采用复合ZnO/SBS改性的沥青混合料综合路用性能最佳,远超出规范要求标准;纳米复合ZnO改性沥青混合料与70~#基质沥青相比动稳定度和动态模量值分别提高了约114.1%和233%,最大破坏弯曲应变和残留稳定度分别提高了35.7%和14.5%。汇总可知,采用纳米ZnO改性方法能够有效解决目前沥青路面所面临的早期病害问题,为沥青混合料改性技术的应用提供技术支持,对延长路面使用寿命具有重要意义。  相似文献   

11.
文章利用GTM试验方法对不同布敦岩沥青掺量(布敦岩沥青中的沥青质量与基质沥青质量之比分别为0%、10%、15%、20%、25%)的布敦岩改性沥青混合料进行了配合比设计,并分别对该沥青混合料的高温抗车辙能力、抗水损害能力以及低温抗裂能力进行了试验研究。试验结果表明:布敦岩沥青混合料具有良好的路用性能。  相似文献   

12.
文章将木质纤维改性沥青SMA-13沥青混合料与矿物纤维改性沥青SMA-13沥青混合料进行对比研究,从水稳定性、高温稳定性、低温性能、抗疲劳性能等对比分析得出:矿物纤维在改善SMA沥青混合料的路用性能上优于木质纤维,并能有效降低施工成本。  相似文献   

13.
本文通过浸水辙试验、冻融劈裂等试验方法,比较橡胶沥青与基质沥青、SBS改性沥青等沥青混合料水稳定性,说明橡胶沥青混合料具有较优的水稳定性。  相似文献   

14.
通过济青高速公路高密段大修工程Duroflex沥青混合料试验段的铺设,阐述了Duroflex添加剂的优点,并对Duroflex添加剂沥青混合料、SBS改性沥青混合料和基质沥青混合料做了对比试验由试验得出Duroflex添加剂沥青混合料具有良好的高低温及水稳定等路用性能,为Duroflex添加剂的应用推广积累经验,提供依据.  相似文献   

15.
文章将不同制备方法的橡胶沥青与基质沥青以及SBS改性沥青进行对比分析,并通过旋转黏度试验和动态剪切流变仪试验评价其粘温性能与疲劳性能。分析结果表明:在135℃~190℃范围内,橡胶沥青的黏度和温度稳定性均高于SBS改性沥青和基质沥青;在0℃、5℃、15℃时,橡胶沥青的疲劳性能均优于SBS改性沥青以及基质沥青。  相似文献   

16.
文章为评价复配双改性剂RCA对沥青混合料路用性能的影响,对RCA-SMA-13改性沥青混合料的高温性能、水稳定性及低温性能进行试验,并与SBS-SMA-13混合料进行对比分析。研究结果表明:RCA改性剂对沥青混合料的高温性能有一定提升,但在水稳定性及低温性能方面,与SBS改性沥青混合料处于同一水平。由于RCA改性剂造价较SBS更低,因此有一定的应用研究价值。  相似文献   

17.
特立尼达湖沥青(TLA)是世界上最著名、使用范围最广泛、历史最悠久的天然沥青,它具有较好的路用性能。文章从特立尼达湖沥青(TLA)对基质沥青的改性性能试验出发,分析说明掺加湖沥青可以提高基质沥青性能,通过对比试验,进一步评价了特立尼达湖改性沥青混合料的优良路用性能。  相似文献   

18.
沥青路面在外界环境因素的综合作用下,容易出现裂缝、松散、车辙等常见病害。这些病害产生的主要原因之一是沥青混合料在拌合、运输以及摊铺过程中,会发生不同程度的老化,致使沥青路面出现各种病害。为了研究沥青混合料抗热氧老化性能,文章采用短期与长期热氧老化模拟试验,对天然沥青改性沥青混合料的高低温性能进行研究,为天然沥青改性沥青混合料在公路工程中的应用提供参考。  相似文献   

19.
通过在沥青中掺入不同量的废旧橡胶粉进行沥青改性,以解决我国道路沥青温度敏感性大的问题,进行了橡胶粉改性沥青性能试验,橡胶粉改性沥青混合料的路用性能试验,确定掺入橡胶粉剂量在15%为最佳,通过试验数据表明,沥青混合料的各项路用性能得到明显改善。  相似文献   

20.
为研究基质沥青与SBS改性沥青的老化行为,文章采用室内PAV试验与室外日照对沥青进行长期及短期老化,提出老化指数评价指标,并采用软化点试验、针入度试验及BBR试验对沥青老化前后性能进行评价.结果 表明:SBS改性沥青的抗老化性能优于基质沥青;随老化加重,基质沥青的软化点增大,针入度降低,劲度模量增大,使用性能劣化;SB...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号