首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 660 毫秒
1.
This paper illustrates a ride matching method for commuting trips based on clustering trajectories, and a modeling and simulation framework with ride-sharing behaviors to illustrate its potential impact. It proposes data mining solutions to reduce traffic demand and encourage more environment-friendly behaviors. The main contribution is a new data-driven ride-matching method, which tracks personal preferences of road choices and travel patterns to identify potential ride-sharing routes for carpool commuters. Compared with prevalent carpooling algorithms, which allow users to enter departure and destination information for on-demand trips, the proposed method focuses more on regular commuting trips. The potential effectiveness of the approach is evaluated using a traffic simulation-assignment framework with ride-sharing participation using the routes suggested by our algorithm. Two types of ride-sharing participation scenarios, with and without carpooling information, are considered. A case study with the Chicago tested is conducted to demonstrate the proposed framework’s ability to support better decision-making for carpool commuters. The results indicate that with ride-matching recommendations using shared vehicle trajectory data, carpool programs for commuters contribute to a less congested traffic state and environment-friendly travel patterns.  相似文献   

2.
Carpooling has been considered a solution for alleviating traffic congestion and reducing air pollution in cities. However, the quantification of the benefits of large-scale carpooling in urban areas remains a challenge due to insufficient travel trajectory data. In this study, a trajectory reconstruction method is proposed to capture vehicle trajectories based on citywide license plate recognition (LPR) data. Then, the prospects of large-scale carpooling in an urban area under two scenarios, namely, all vehicle travel demands under real-time carpooling condition and commuter vehicle travel demands under long-term carpooling condition, are evaluated by solving an integer programming model based on an updated longest common subsequence (LCS) algorithm. A maximum weight non-bipartite matching algorithm is introduced to find the optimal solution for the proposed model. Finally, road network trip volume reduction and travel speed improvement are estimated to measure the traffic benefits attributed to carpooling. This study is applied to a dataset that contains millions of LPR data recorded in Langfang, China for 1 week. Results demonstrate that under the real-time carpooling condition, the total trip volumes for different carpooling comfort levels decrease by 32–49%, and the peak-hour travel speeds on most road segments increase by 5–40%. The long-term carpooling relationship among commuter vehicles can reduce commuter trips by an average of 30% and 24% in the morning and evening peak hours, respectively, during workdays. This study shows the application potential and promotes the development of this vehicle travel mode.  相似文献   

3.
The paper presents a statistical model for urban road network travel time estimation using vehicle trajectories obtained from low frequency GPS probes as observations, where the vehicles typically cover multiple network links between reports. The network model separates trip travel times into link travel times and intersection delays and allows correlation between travel times on different network links based on a spatial moving average (SMA) structure. The observation model presents a way to estimate the parameters of the network model, including the correlation structure, through low frequency sampling of vehicle traces. Link-specific effects are combined with link attributes (speed limit, functional class, etc.) and trip conditions (day of week, season, weather, etc.) as explanatory variables. The approach captures the underlying factors behind spatial and temporal variations in speeds, which is useful for traffic management, planning and forecasting. The model is estimated using maximum likelihood. The model is applied in a case study for the network of Stockholm, Sweden. Link attributes and trip conditions (including recent snowfall) have significant effects on travel times and there is significant positive correlation between segments. The case study highlights the potential of using sparse probe vehicle data for monitoring the performance of the urban transport system.  相似文献   

4.
Origin-destination (OD) pattern estimation is a vital step for traffic simulation applications and active urban traffic management. Many methods have been proposed to estimate OD patterns based on different data sources, such as GPS data and automatic license plate recognition (ALPR) data. These data can be used to identify vehicle IDs and estimate their trajectories by matching vehicles identified by different sensors across the network. OD pattern estimation using ALPR data remains a challenge in real-life applications due to the difficulty in reconstructing vehicle trajectories. This paper proposes an offline method for historical OD pattern estimation based on ALPR data. A particle filter is used to estimate the probability of a vehicle’s trajectory from all possible candidate trajectories. The initial particles are generated by searching potential paths in a pre-determined area based on the time geography theory. Then, the path flow estimation process is conducted through dividing the reconstructed complete trajectories of all detected vehicles into multiple trips. Finally, the OD patterns are estimated by adding up the path flows with the same ODs. The proposed method was implemented on a real-world traffic network in Kunshan, China and verified through a calibrated microscopic traffic simulation model. The results show that the MAPEs of the OD estimation are lower than 19%. Further investigation shows that there exists a minimum required ALPR sampling rate (60% in the test network) for accurately estimating the OD patterns. The findings of this study demonstrate the effectiveness of the proposed method in OD pattern estimation.  相似文献   

5.
Data from connected probe vehicles can be critical in estimating road traffic conditions. Unfortunately, current available data is usually sparse due to the low reporting frequency and the low penetration rate of probe vehicles. To help fill the gaps in data, this paper presents an approach for estimating the maximum likelihood trajectory (MLT) of a probe vehicle in between two data updates on arterial roads. A public data feed from transit buses in the city of San Francisco is used as an example data source. Low frequency updates (at every 200 m or 90 s) leaves much to be inferred. We first estimate travel time statistics along the road and queue patterns at intersections from historical probe data. The path is divided into short segments, and an Expectation Maximization (EM) algorithm is proposed for allocating travel time statistics to each segment. Then the trajectory with the maximum likelihood is generated based on segment travel time statistics. The results are compared with high frequency ground truth data in multiple scenarios, which demonstrate the effectiveness of the proposed approach, in estimating both the trajectory while moving and the stop positions and durations at intersections.  相似文献   

6.
Traffic signals on urban highways force vehicles to stop frequently and thus causes excessive travel delay, extra fuel consumption and emissions, and increased safety hazards. To address these issues, this paper proposes a trajectory smoothing method based on Individual Variable Speed Limits with Location Optimization (IVSL-LC) in coordination with pre-fixed traffic signals. This method dynamically imposes speed limits on some identified Target Controlled Vehicles (TCVs) with Vehicle to Infrastructures (V2I) communication ability at two IVSL points along an approaching lane. According to real-time traffic demand and signal timing information, the trajectories of each approaching vehicle are made to run smoothly without any full stop. Essentially, only TCVs’ trajectories need to be controlled and the other vehicles just follow TCVs with Gipps’ car-following model. The Dividing RECTangles (DIRECT) algorithm is used to optimize the locations of the IVSLs. Numerical simulation is conducted to compare the benchmark case without vehicle control, the individual advisory speed limits (IASL) and the proposed IVSL-LC. The result shows that compared with the benchmark, the IVSL-LC method can greatly increase traffic efficiency and reduce fuel consumption. Compared with IASL, IVSL-LC has better performance across all traffic demand levels, and the improvements are the most under high traffic demand. Finally, the results of compliance analysis show that the effect of IVSL-LC improves as the compliance rate increases.  相似文献   

7.
Automated driving is gaining increasing amounts of attention from both industry and academic communities because it is regarded as the most promising technology for improving road safety in the future. The ability to make an automated lane change is one of the most important parts of automated driving. However, there has been little research into automated lane change maneuvers, and current research has not identified a way to avoid potential collisions during lane changes, which result from the state variations of the other vehicles. One important reason is that the lane change vehicle cannot acquire accurate information regarding the other vehicles, especially the vehicles in the adjacent lane. However, vehicle-to-vehicle communication has the advantage of providing more information, and this information is more accurate than that obtained from other sensors, such as radars and lasers. Therefore, we propose a dynamic automated lane change maneuver based on vehicle-to-vehicle communication to accomplish an automated lane change and eliminate potential collisions during the lane change process. The key technologies for this maneuver are trajectory planning and trajectory tracking. Trajectory planning calculates a reference trajectory satisfying the demands of safety, comfort and traffic efficiency and updates it to avoid potential collisions until the lane change is complete. The trajectory planning method converts the planning problem into a constrained optimization problem using the lane change time and distance. This method is capable of planning a reference trajectory for a normal lane change, an emergency lane change and a change back to the original lane. A trajectory-tracking controller based on sliding mode control calculates the control inputs to make the host vehicle travel along the reference trajectory. Finally, simulations and experiments using a driving simulator are conducted. They demonstrate that the proposed dynamic automated lane change maneuver can avoid potential collisions during the lane change process effectively.  相似文献   

8.
Aggregated network level modeling and control of traffic in urban networks have recently gained a lot of interest due to unpredictability of travel behaviors and high complexity of physical modeling in microscopic level. Recent research has shown the existence of well-defined Macroscopic Fundamental Diagrams (MFDs) relating average flow and density in homogeneous networks. The concept of MFD allows to design real-time traffic control schemes specifically hierarchical perimeter control approaches to alleviate or postpone congestion. Considering the fact that congestion is spatially correlated in adjacent roads and it propagates spatiotemporaly with finite speed, describing the main pockets of congestion in a heterogeneous city with small number of clusters is conceivable. In this paper, we propose a three-step clustering algorithm to partition heterogeneous networks into connected homogeneous regions, which makes the application of perimeter control feasible. The advantages of the proposed method compared to the existing ones are the ability of finding directional congestion within a cluster, robustness with respect to parameters calibration, and its good performance for networks with low connectivity and missing data. Firstly, we start to find a connected homogeneous area around each road of the network in an iterative way (i.e. it forms a sequence of roads). Each sequence of roads, defined as ‘snake’, is built by starting from a single road and iteratively adding one adjacent road based on its similarity to join previously added roads in that sequence. Secondly, based on the obtained sequences from the first step, a similarity measure is defined between each pair of the roads in the network. The similarities are computed in a way that put more weight on neighboring roads and facilitate connectivity of the clusters. Finally, Symmetric Non-negative Matrix Factorization (SNMF) framework is utilized to assign roads to proper clusters with high intra-similarity and low inter-similarity. SNMF partitions the data by providing a lower rank approximation of the similarity matrix. The proposed clustering framework is applied in medium and large-size networks based on micro-simulation and empirical data from probe vehicles. In addition, the extension of the algorithm is proposed to deal with the networks with sparse measurements where information of some links is missing. The results show the effectiveness and robustness of the extended algorithm applied to simulated network under different penetration rates (percentage of links with data).  相似文献   

9.
With trajectory data, a complete microscopic and macroscopic picture of traffic flow operations can be obtained. However, trajectory data are difficult to observe over large spatiotemporal regions—particularly in urban contexts—due to practical, technical and financial constraints. The next best thing is to estimate plausible trajectories from whatever data are available. This paper presents a generic data assimilation framework to reconstruct such plausible trajectories on signalized urban arterials using microscopic traffic flow models and data from loops (individual vehicle passages and thus vehicle counts); traffic control data; and (sparse) travel time measurements from whatever source available. The key problem we address is that loops suffer from miss- and over-counts, which result in unbounded errors in vehicle accumulations, rendering trajectory reconstruction highly problematic. Our framework solves this problem in two ways. First, we correct the systematic error in vehicle accumulation by fusing the counts with sparsely available travel times. Second, the proposed framework uses particle filtering and an innovative hierarchical resampling scheme, which effectively integrates over the remaining error distribution, resulting in plausible trajectories. The proposed data assimilation framework is tested and validated using simulated data. Experiments and an extensive sensitivity analysis show that the proposed method is robust to errors both in the model and in the measurements, and provides good estimations for vehicle accumulation and vehicle trajectories with moderate sensor quality. The framework does not impose restrictions on the type of microscopic models used and can be naturally extended to include and estimate additional trajectory attributes such as destination and path, given data are available for assimilation.  相似文献   

10.
This paper focuses on the lane-changing trajectory planning (LTP) process in the automatic driving technologies. Existing studies on the LTP algorithms are primarily the static planning method in which the states of the surrounding vehicles of a lane-changing vehicle are assumed to keep unchanged in the whole lane-changing process. However, in real-world traffic, the velocities of the surrounding vehicles change dynamically, and the lane-changing vehicle needs to adjust its velocity and positions correspondingly in real-time to maintain safety. To address such limitations, the dynamic lane-changing trajectory planning (DLTP) model is proposed in the limited literature. This paper proposes a novel DLTP model consisting of the lane-changing starting-point determination module, trajectory decision module and trajectory generation module. The model adopts a time-independent polynomial trajectory curve to avoid the unrealistic assumptions on lane-changing velocities and accelerations in the existing DLTP model. Moreover, a rollover-avoidance algorithm and a collision-avoidance algorithm containing a reaction time are presented to guarantee the lane-changing safety of automated vehicles, even in an emergent braking situation. The field lane-changing data from NGSIM data are used to construct a real traffic environment for lane-changing vehicles and verify the effectiveness of the proposed model, and CarSim is applied to investigate the traceability of the planned lane-changing trajectories using the proposed model. The results indicate that an automated vehicle can complete the lane-changing process smoothly, efficiently and safely following the trajectory planned by the proposed model, and the planned velocity and trajectory can be well-tracked by automated vehicles.  相似文献   

11.
Current research on traffic control has focused on the optimization of either traffic signals or vehicle trajectories. With the rapid development of connected and automated vehicle (CAV) technologies, vehicles equipped with dedicated short-range communications (DSRC) can communicate not only with other CAVs but also with infrastructure. Joint control of vehicle trajectories and traffic signals becomes feasible and may achieve greater benefits regarding system efficiency and environmental sustainability. Traffic control framework is expected to be extended from one dimension (either spatial or temporal) to two dimensions (spatiotemporal). This paper investigates a joint control framework for isolated intersections. The control framework is modeled as a two-stage optimization problem with signal optimization at the first stage and vehicle trajectory control at the second stage. The signal optimization is modeled as a dynamic programming (DP) problem with the objective to minimize vehicle delay. Optimal control theory is applied to the vehicle trajectory control problem with the objective to minimize fuel consumption and emissions. A simplified objective function is adopted to get analytical solutions to the optimal control problem so that the two-stage model is solved efficiently. Simulation results show that the proposed joint control framework is able to reduce both vehicle delay and emissions under a variety of demand levels compared to fixed-time and adaptive signal control when vehicle trajectories are not optimized. The reduced vehicle delay and CO2 emissions can be as much as 24.0% and 13.8%, respectively for a simple two-phase intersection. Sensitivity analysis suggests that maximum acceleration and deceleration rates have a significant impact on the performance regarding both vehicle delay and emission reduction. Further extension to a full eight-phase intersection shows a similar pattern of delay and emission reduction by the joint control framework.  相似文献   

12.
This work examines the impact of heavy vehicle movements on measured traffic characteristics in detail. Although the number of heavy vehicles within the traffic stream is only a small percentage, their impact is prominent. Heavy vehicles impose physical and psychological effects on surrounding traffic flow because of their length and size (physical) and acceleration/deceleration (operational) characteristics. The objective of this work is to investigate the differences in traffic characteristics in the vicinity of heavy vehicles and passenger cars. The analysis focuses on heavy traffic conditions (level of service E) using a trajectory data of highway I‐80 in California. The results show that larger front and rear space gaps exist for heavy vehicles compared with passenger cars. This may be because of the limitations in manoeuvrability of heavy vehicles and the safety concerns of the rear vehicle drivers, respectively. In addition, heavy vehicle drivers mainly keep a constant speed and do not change their speed frequently. This work also examines the impact of heavy vehicles on their surrounding traffic in terms of average travel time and number of lane changing manoeuvres using Advanced Interactive Microscopic Simulator for Urban and Non‐Urban Networks (AIMSUN) microscopic traffic simulation package. According to the results, the average travel time increases when proportion of heavy vehicles rises in each lane. To reflect the impact of heavy vehicles on average travel time, a term related to heavy vehicle percentage is introduced into two different travel time equations, Bureau of Public Roads and Akçelik's travel time equations. The results show that using an exclusive term for heavy vehicles can better estimate the travel times for more than 10%. Finally, number of passenger car lane changing manoeuvres per lane will be more frequent when more heavy vehicles exist in that lane. The influence of heavy vehicles on the number of passenger car lane changing is intensified in higher traffic densities and higher percentage of heavy vehicles. Large numbers of lane changing manoeuvres can increase the number of traffic accidents and potentially reduce traffic safety. The results show an increase of 5% in the likelihood of accidents, when percentage of heavy vehicles increases to 30% of total traffic. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

In this paper we discuss a dynamic origin–destination (OD) estimation problem that has been used for identifying time-dependent travel demand on a road network. Even though a dynamic OD table is an indispensable data input for executing a dynamic traffic assignment, it is difficult to construct using the conventional OD construction method such as the four-step model. For this reason, a direct estimation method based on field traffic data such as link traffic counts has been used. However, the method does not account for a logical relationship between a travel demand pattern and socioeconomic attributes. In addition, the OD estimation method cannot guarantee the reliability of estimated results since the OD estimation problem has a property named the ‘underdetermined problem.’ In order to overcome such a problem, the method developed in this paper makes use of vehicle trajectory samples with link traffic counts. The new method is applied to numerical examples and shows promising capability for identifying a temporal and spatial travel demand pattern.  相似文献   

14.
Urban travel time information is of great importance for many levels of traffic management and operation. This paper develops a tensor-based Bayesian probabilistic model for citywide and personalized travel time estimation, using the large-scale and sparse GPS trajectories generated by taxicabs. Combined with the knowledge learned from historical trajectories, travel times of different drivers on all road segments in some time slots are modeled with a 3-order tensor. This tensor-based modeling approach incorporates both the spatial correlation between different road segments and the person-specific variation between different drivers, as well as the coarse-grain temporal correlation between recent and historical traffic conditions and the fine-grain temporal correlation between different time slots. To account for the variability caused by the intrinsic uncertainties in urban road network, each travel time entry in the built tensor is treated as a variable following a log-normal distribution. With the help of the fully Bayesian treatment, the model achieves automatic hyper-parameter tuning and model complexity controlling, and therefore the problem of over-fitting is prevented even when the used data is large-scale and sparse. The proposed model is applied to a real case study on the citywide road network of Beijing, China, using the large-scale and sparse GPS trajectories collected from over 32,670 taxicabs for a period of two months. Empirical results of extensive experiments demonstrate that the proposed model provides an effective and robust approach for urban travel time estimation and outperforms the considered competing methods.  相似文献   

15.
Conceptually, a Green Light Optimal Speed Advisory (GLOSA) system suggests speeds to vehicles, allowing them to pass through an intersection during the green interval. In previous papers, a single speed is computed for each vehicle in a range between acceptable minimum and maximum values (for example between standstill and the speed limit). This speed is assumed to be constant until the beginning of the green interval, and sent as advice to the vehicle. The goal is to optimise for a particular objective, whether it be minimisation of emissions (for environmental reasons), fuel usage or delay. This paper generalises the advice given to a vehicle, by optimising for delay over the entire trajectory instead of suggesting an individual speed, regardless of initial conditions – time until green, distance to intersection and initial speed. This may require multiple acceleration manoeuvres, so the advice is sent as a suggested acceleration at each time step. Such advice also takes into account a suitable safety constraint, ensuring that vehicles are always able to stop before the intersection during a red interval, thus safeguarding against last-minute signal control schedule changes. While the algorithms developed primarily minimise delay, they also help to reduce fuel usage and emissions by conserving kinetic energy. Since vehicles travel in platoons, the effectiveness of a GLOSA system is heavily reliant on correctly identifying the leading vehicle that is the first to be given trajectory advice for each cycle. Vehicles naturally form a platoon behind this leading vehicle. A time loop technique is proposed which allows accurate identification of the leader even when there are complex interactions between preceding vehicles. The developed algorithms are ideal for connected autonomous vehicle environments, because computer control allows vehicles’ trajectories to be managed with greater accuracy and ease. However, the advice algorithms can also be used in conjunction with manual control provided Vehicle-to-Infrastructure (V2I) communication is available.  相似文献   

16.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Well-defined relationships between flow and density averaged spatially across urban traffic networks, more commonly known as Macroscopic Fundamental Diagrams (MFDs), have been recently verified to exist in reality. Researchers have proposed using MFDs to monitor the status of urban traffic networks and to inform the design of network-wide traffic control strategies. However, it is also well known that empirical MFDs are not easy to estimate in practice due to difficulties in obtaining the requisite data needed to construct them. Recent works have devised ways to estimate a network’s MFD using limited trajectory data that can be obtained from GPS-equipped mobile probe vehicles. These methods assume that the market penetration level of mobile probe vehicles is uniform across the entire set of OD pairs in the network; however, in reality the probe vehicle market penetration rate varies regionally within a network. When this variation is combined with the imbalance of probe trip lengths and travel times, the compound effects will further complicate the estimation of the MFD.To overcome this deficit, we propose a method to estimate a network’s MFD using mobile probe data when the market penetration rates are not necessarily the same across an entire network. This method relies on the determination of appropriate average probe penetration rates, which are weighted harmonic means using individual probe vehicle travel times and distances as the weights. The accuracy of this method is tested using synthetic data generated in the INTEGRATION micro-simulation environment by comparing the estimated MFDs to the ground truth MFD obtained using a 100% market penetration of probe vehicles. The results show that the weighted harmonic mean probe penetration rates outperform simple (arithmetic) average probe penetration rates, as expected. This especially holds true as the imbalance of demand and penetration level increases. Furthermore, as the probe penetration rates are generally not known, an algorithm to estimate the probe penetration rates of regional OD pairs is proposed. This algorithm links count data from sporadic fixed detectors in the network to information from probe vehicles that pass the detectors. The simulation results indicate that the proposed algorithm is very effective. Since the data needed to apply this algorithm are readily available and easy to collect, the proposed algorithm is practically feasible and offers a better approach for the estimation of the MFD using mobile probe data, which are becoming increasingly available in urban environments.  相似文献   

18.
This paper relies on vehicle trajectory collection on a corridor, to compare different traffic representations used for the estimation of the sound power of light vehicles and the resulting sound pressure levels. Four noise emission models are tested. The error introduced when the emissions are calculated based on speeds measured at regular intervals along the road network are quantified and explained. The current noise emission models might in particular misestimate noise levels under congestion. This bias can be reduced by introducing additional traffic variables in the modeling. In addition, significant differences within the models are highlighted, especially concerning their accounting of vehicle accelerations. Models that rely on a binary representation of acceleration regimes (a vehicle or a road segment is accelerating or not) can lead to errors in practice. Models under use in Europe have a very low sensitivity to acceleration values. These results help underlying the further required improvements of dynamic road traffic noise models.  相似文献   

19.
Connected vehicle technology can be beneficial for traffic operations at intersections. The information provided by cars equipped with this technology can be used to design a more efficient signal control strategy. Moreover, it can be possible to control the trajectory of automated vehicles with a centralized controller. This paper builds on a previous signal control algorithm developed for connected vehicles in a simple, single intersection. It improves the previous work by (1) integrating three different stages of technology development; (2) developing a heuristics to switch the signal controls depending on the stage of technology; (3) increasing the computational efficiency with a branch and bound solution method; (4) incorporating trajectory design for automated vehicles; (5) using a Kalman filter to reduce the impact of measurement errors on the final solution. Three categories of vehicles are considered in this paper to represent different stages of this technology: conventional vehicles, connected but non-automated vehicles (connected vehicles), and automated vehicles. The proposed algorithm finds the optimal departure sequence to minimize the total delay based on position information. Within each departure sequence, the algorithm finds the optimal trajectory of automated vehicles that reduces total delay. The optimal departure sequence and trajectories are obtained by a branch and bound method, which shows the potential of generalizing this algorithm to a complex intersection.Simulations are conducted for different total flows, demand ratios and penetration rates of each technology stage (i.e. proportion of each category of vehicles). This algorithm is compared to an actuated signal control algorithm to evaluate its performance. The simulation results show an evident decrease in the total number of stops and delay when using the connected vehicle algorithm for the tested scenarios with information level of as low as 50%. Robustness of this algorithm to different input parameters and measurement noises are also evaluated. Results show that the algorithm is more sensitive to the arrival pattern in high flow scenarios. Results also show that the algorithm works well with the measurement noises. Finally, the results are used to develop a heuristic to switch between the different control algorithms, according to the total demand and penetration rate of each technology.  相似文献   

20.
Emerging sensing technologies such as probe vehicles equipped with Global Positioning System (GPS) devices on board provide us real-time vehicle trajectories. They are helpful for the understanding of the cases that are significant but difficult to observe because of the infrequency, such as gridlock networks. On the premise of this type of emerging technology, this paper propose a sequential route choice model that describes route choice behavior, both in ordinary networks, where drivers acquire spatial knowledge of networks through their experiences, and in extraordinary networks, which are situations that drivers rarely experience, and applicable to real-time traffic simulations. In extraordinary networks, drivers do not have any experience or appropriate information. In such a context, drivers have little spatial knowledge of networks and choose routes based on dynamic decision making, which is sequential and somewhat forward-looking. In order to model these decision-making dynamics, we propose a discounted recursive logit model, which is a sequential route choice model with the discount factor of expected future utility. Through illustrative examples, we show that the discount factor reflects drivers’ decision-making dynamics, and myopic decisions can confound the network congestion level. We also estimate the parameters of the proposed model using a probe taxis’ trajectory data collected on March 4, 2011 and on March 11, 2011, when the Great East Japan Earthquake occurred in the Tokyo Metropolitan area. The results show that the discount factor has a lower value in gridlock networks than in ordinary networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号