首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
为了研究高地应力软岩隧道施工变形控制方法,以兰渝铁路木寨岭隧道为例,通过对超前导洞法与三台阶法进行现场试验,分析了2种施工方法在高地应力软岩地层的变形控制效果,总结了三台阶法施工各阶段的围岩变形规律,主要结论为: 1)超前导洞法与三台阶法施工,隧道中台阶是变形控制的重点; 2)2种方法对高地应力软岩大变形总体控制效果相近,应结合其施工效率进行比选; 3)隧道开挖后应及早施作仰拱,这对控制隧道变形极为有利。  相似文献   

2.
昝永奇 《隧道建设》2017,37(Z1):99-106
深圳求水山隧道下穿机荷高速公路收费站,地面车流量大,隧道超浅埋并穿越回填土富水地层,结构松软,施工沉降难以控制,施工不当会引起隧道变形坍塌和路面沉陷,危及地面行车安全。为找出控制沉降的关键步序,运用FLAC3D软件对施工过程进行沉降分析,先确定超浅埋隧道在下穿富水软土地层条件下产生变形的原因,再对隧道施工各工序的时间和步距数据进行调研与分析。提出优化后隧道施工工法(双侧壁导坑微台阶工法)及拱脚加固、掌子面封闭、地下水处治、开挖及支护工序卡控、监控量测等控制变形技术措施,成功解决变形沉降难题,将拱顶下沉控制在45.6 mm左右,地面沉降控制在184 mm左右,化解了工程安全风险,确保了隧道施工和地面行车安全。  相似文献   

3.
为研究超大跨度公路隧道的合理施工方法,该文以连霍高速公路新疆境内小草湖至乌鲁木齐段改扩建工程杏花村1号隧道为依托,通过数值模拟方法对超大跨度公路隧道Ⅳ级围岩采用CD法、上台阶CD法和三台阶七步开挖法施工的隧道变形和支护结构受力情况进行分析,在变形与支护结构受力满足设计要求的前提下,考虑各施工方法的优缺点等因素,确定最合理的施工方法,通过开展现场试验分析施工方法的可行性。结果表明:(1) CD法、上台阶CD法和三台阶七步开挖法数值计算的隧道变形均不大于21 mm,初期支护安全系数分别为2.48、2.41、2.28,大于隧道设计细则要求的最小安全系数,变形与支护结构受力均满足设计要求;(2)对比3种工法的优缺点,结合隧道地质条件等因素,确定杏花村1号隧道Ⅳ级围岩最优施工方法为上台阶CD法;(3)根据现场测试结果,Ⅳ级围岩采用上台阶CD法施工,拱部下沉最大值为14.6 mm,周边位移最大值为15.0 mm,隧道变形控制效果较好;初期支护的最小安全系数为6.94,满足设计要求。  相似文献   

4.
泥岩地层大断面隧道围岩变形控制   总被引:1,自引:0,他引:1       下载免费PDF全文
以兰渝铁路胡家湾隧道进口段施工为例,介绍泥岩地层修建大断面隧道变形控制的方法。施工中通过围岩量测掌握围岩变形动态,采取分部开挖临时仰拱封闭成环及上半断面扇形支撑的技术措施,控制围岩的变形。实践证明:效果较好,对目前的客专大断面隧道控制大变形施工有一定的帮助。  相似文献   

5.
席浩  李绪干  时坚  侯奇 《隧道建设》2014,34(7):679-684
为研究第三纪砂质黄土条件下的大断面隧道施工变形控制技术,以宝兰铁路大断面黄土隧道施工为依托,通过midas数值模拟软件对比分析不同仰拱封闭距离引起拱顶沉降实测数据,阐述大断面黄土隧道施工变形规律,以确定其合理的仰拱封闭距离为35 m;采用三台阶临时仰拱法,合理控制开挖步距:上台阶为0.6 m,中台阶和下台阶为1.2 m;辅以注浆小导管超前支护和锁脚锚杆加固等技术措施,达到了很好的变形控制效果,最大沉降控制为50~160 mm;通过分析不同隧道断面净空变形规律,总结第三纪砂质黄土地质条件下,大断面黄土隧道施工预留变形量可取120~160 mm。  相似文献   

6.
软弱围岩大跨隧道施工技术的思考   总被引:4,自引:0,他引:4       下载免费PDF全文
王勇 《隧道建设》2004,24(3):47-50
在软弱围岩中修建大跨隧道,选择一套合理的施工方案和正确的施工方法十分重要。本文以宝兰铁路增建二线新王家滩双线隧道的施工为例,介绍了该隧道在施工过程中的初期支护变形和几次坍方的处理,分析了变形和坍方的原因。并对今后类似条件下隧道的施工进行了思考。  相似文献   

7.
地铁盾构隧道下穿地道桥施工过程中,对地道桥、地面、隧道沉降控制是确保施工安全的关键。该文依托长沙市地铁1号线黄兴广场站~南门口站区间盾构隧道下穿人民路地道桥工程,采用FLAC3D构建三维数值模型,探讨了盾构下穿地道桥施工过程中地表、地道桥及隧道的变形规律。结果表明:地道桥呈整体向下沉降趋势,隧道双洞贯通后,最大沉降值达到5.26 mm;隧道拱顶和拱底出现一定程度的沉降和隆起,最大变形量分别为6.24、8.65mm。最后结合工程实践提出了盾构下穿地道桥的施工控制对策。  相似文献   

8.
张钧昱 《路基工程》2017,(2):167-171
兰新铁路第二双线LXS-8标隧道位于祁连山地区,在冻融期间浅埋段施工过程中,隧道多次出现坍塌或大变形现象。为确保该地区隧道施工安全,完成施工生产任务,采取了修建隧道洞顶排水沟、优化开挖方法、缩短作业循环时间、加强监控量测等措施,使冻融期间浅埋段隧道易坍塌、变形现象得到控制,确保了冻融期间浅埋段隧道施工安全,按期完成了隧道施工任务。  相似文献   

9.
隧道铣挖法施工技术   总被引:1,自引:0,他引:1  
对采用铣挖机进行隧道掘进施工的适用条件、设备配套、施工工艺及有关技术措施进行详细论述,并结合武广客运专线几座不同地质条件的大断面隧道采用铣挖法施工的实际情况,对隧道铣挖法的施工工艺、工效、围岩变形控制、存在问题、注意事项及改进措施等进行分析探讨,认为铣挖法在隧道不允许爆破、围岩强度适中、节理裂隙发育、变形控制严格的条件下,不失为一种经济有效的方法,对提高我国隧道的施工机械化水平作用较大。  相似文献   

10.
公路隧道施工变形监测精度要求探讨   总被引:1,自引:0,他引:1  
隧道周边收敛和拱顶下沉监测是判断围岩支护效果、二次衬砌施作时间、隧道动态信息化设计与施工以及保证隧道施工安全的重要措施。现有JTG F60-2009《公路隧道施工技术规范》对隧道周边收敛和拱顶下沉监测的精度要求为0.1 mm,明显高于铁路隧道施工和基坑工程变形监测0.5~1.0 mm的精度要求,且公路隧道的实际监测精度很难达到规范规定的精度要求。总结现有公路隧道、铁路隧道和其他规范的具体监测内容和要求,结合现有隧道施工监测仪器的精度技术指标,参照隧道设计规范规定的预留变形量、隧道施工阶段变形监测统计结果和基坑工程监测规范的精度要求等,建议将公路隧道周边收敛和拱顶下沉监测的精度要求修改为0.5~1.0 mm。0.5~1.0 mm的监测精度要求可以保证公路隧道的施工安全,促进高精度全站仪等非接触量测方法和仪器在公路隧道施工变形监测中的应用和推广,提高公路隧道施工变形的监测效率,避免因达不到JTG F60-2009《公路隧道施工技术规范》规定的监测精度要求而引发的监测数据造假现象。  相似文献   

11.
在浅埋软弱隧道台阶法施工中,预留变形量不仅要考虑围岩累计变形量,也要考虑支护结构随围岩变形的时空效应。基于围岩变形监测资料,对某隧道支护与围岩的协调变形过程进行了详细分析,发现隧道收敛与沉降变形具有明显的时空效应,在此基础上提出了理想预留变形量下的变形模型。在考虑台阶法施工中的围岩变形时空效应下,对隧道的预留变形量进行了监测,上台阶节段初支段落整体上移200mm;中台阶衬砌在设计轮廓线外移150mm,节段长度不变且对应钢架半径增大150mm;下台阶节段钢架对应半径做同样的增加,对接中台阶进行拼装施工。后期监测资料表明,隧道在完成变形后基本达到了设计轮廓线位置。该预留变形量的确定方法既有效避免了大变形对隧道的影响,也解决了支护结构施工与材料用料上的矛盾问题,为浅埋软弱地层隧道预留变形量确定提供了新的思路。  相似文献   

12.
张社荣  于茂  杜晓喻  娄雨 《隧道建设》2015,35(10):989-996
研究双线盾构隧道在不同施工间隔下施工时地表的变形规律,对控制地表整体变形及不均匀变形十分重要。依托天津地铁6号线双线盾构隧道下穿天津西站站场实际工程实例,以铁路线设施的关键变形控制指标为评判依据,研究盾构左右线不同施工间隔下的地表变形分布特性,对比分析间隔距离与地表沉降和不均匀沉降的关系,为双线盾构隧道工程选择合适的施工间隔提供依据,以保证工程安全及地表铁路设施的正常运行。结果表明,不同施工间隔的影响主要表现为掘进过程对地表土体变形的扰动程度及扰动范围的明显差异:对于地表沉降变形而言,施工间隔越小,掌子面处地表土体沉降越快,且左线完全先行时,地表土体的纵向变形范围约为20 m,相较两洞同时施工时变形范围减小约25 m;对于地表不均匀变形而言,左线完全先行施工条件下,地表轨向变形、水平变形、轨距变形最大分别约为1、0.6、0.2 mm,相较两洞同时施工时分别减小0.8、0.2、0.15 mm。因此,对于双线盾构隧道而言,两洞同时施工时最不利于地表变形的控制,而一条隧道完全先行掘进的方案最有利于地表变形的控制。  相似文献   

13.
乌鞘岭隧道岭脊段控制千枚岩大变形快速施工   总被引:6,自引:1,他引:6       下载免费PDF全文
 针对乌鞘岭隧道岭脊段高地应力千枚岩大变形,通过对施工方案不断优化,对施工工艺不断改进,并制定各工序标准耗时,同时进行严格的施工组织管理,得到了在高地应力条件下能较好控制软岩(千枚岩)大变形的一整套快速施工技术。着重介绍了乌鞘岭隧道岭脊段控制千枚岩大变形的快速施工指导思想、施工方法、施工工序、各工序标准耗时及各工序间距控制标准。  相似文献   

14.
软弱围岩隧道大变形施工控制技术   总被引:2,自引:1,他引:1  
漆国富 《公路与汽运》2010,(1):143-144,152
结合某软弱围岩隧道实体工程,对软弱围岩隧道大变形施工控制技术进行研究,归纳了其围岩大变形破坏特征,分析了软弱围岩隧道大变形的产生原因,从施工工艺、施工控制方面提出了防止软弱围岩隧道产生大变形的措施和方法。  相似文献   

15.
马栋 《隧道建设》2018,38(Z2):253-260
针对王岗山隧道出口段三线车站隧道断面施工前期CRD与台阶法施工存在拱顶下沉与收敛变形过快过大,断面拱顶下沉和收敛变形速度达到3~5 mm/d,日最大下沉和收敛值为4.7 mm和4.8 mm,15 d内累计下沉109 mm、收敛53 mm,且下沉、变形还在进一步发展中,存在围岩侵入设计限界的问题,通过现场调研,分析大变形产生的主要原因在于埋深浅、跨度大、扁平率低、穿越辉绿岩侵入岩与沉积岩的混杂带,岩体破碎,岩质软弱、易滑。提出优化施工方案,采用双侧壁导坑法施工,优化超前和初期支护措施,并制定详细的施工步骤。实际监测结果显示,该优化施工方案有效地控制了围岩变形,初期支护达到了较好的效果,收敛和拱顶下沉基本未突破预留值,保证了施工安全,为按时完成隧道施工提供了保障。  相似文献   

16.
冯建霖 《隧道建设》2015,35(5):473-477
北京首都国际机场T3与T2航站楼之间的单层双跨连拱浅埋暗挖大断面隧道垂直下穿机场跑道,采用超长管幕下十导洞分步暗挖法施工。通过对隧道施工地表变形进行分析,得出以下结论:1)新建隧道施工地表最大沉降值平均为9.28 mm,控制变形情况良好,采用超长管幕保护浅埋暗挖施工技术切实可行;2)3个断面变形拟合得到的确定调节系数平均为0.951,地表变形符合Peck公式;3)变形拟合得到的K值平均为1.903,为北京地区常规数值的3~6倍,管幕的存在对新建隧道施工引起的地层变形具有阻隔及扩散作用;4)变形拟合得到的Vl值平均为0.201%,略低于北京地区常规施工方法水平。  相似文献   

17.
曹波  刘波  聂卫平 《隧道建设》2013,33(11):914-920
以北京地铁10号线二期终-火区间地铁暗挖隧道下穿2条电缆隧道工程为背景,通过地铁暗挖隧道施工的全程动态数值模拟,并基于现场初期支护收敛监测结果进行对比分析,研究砂卵石地层条件下地铁暗挖隧道初期支护收敛变形特点。结果表明: 1)地表最大沉降为6.46 mm,地铁隧道数值模拟得到的最大收敛值为7.10 mm,实测最大收敛值为6.77 mm,地铁隧道初期支护变形控制在合理、安全的范围内; 2)减小钢拱架间距和全断面注浆这2种技术措施对于提高地铁隧道初期支护及围岩的稳定性效果显著; 3)先施工的右线隧道对周边环境引起的损伤大,后施工的左线隧道对周边环境引起的损伤小; 4)先施工的隧道应设计更高的初期支护强度、全断面注浆等技术措施来保证隧道衬砌及围岩的稳定。  相似文献   

18.
基于新建隧道群下穿福州绕城公路东南段董奉山既有隧道工程,运用三维有限元研究新建隧道群施工对既有隧道的影响,分别从爆破和静力施工阶段两个方面进行综合分析。结果表明:新建隧道的开挖进尺控制在1.5 m,最大允许装药量控制在7.54 kg,爆破震速可控制在3 cm/s以内,特大断面隧道群施工对新建隧道的爆破震速在安全可控范围内;既有隧道的最大变形为2.9 mm,围岩主应力的前后变化值为1.50%以内,衬砌应力的最大应力变化值为4.17%,特大断面隧道群施工对新建隧道的影响不大。最后,根据分析结果提出施工期的保障措施。  相似文献   

19.
樊占东 《公路》2022,(6):390-394
针对深埋软岩隧道在施工期间易发生拱顶失稳进而引发围岩大变形问题,以上加山隧道为依托工程,采用FLAC 3D数值模拟技术,主要对比分析了环形开挖留核心土法、上下台阶挖掘法和全截面挖掘法等3种施工方式下的隧道拱顶沉降变形规律、拱底隆起变形规律、地表沉降变形规律、应力场分布规律,阐明了3种开挖方式对深埋软岩隧道围岩稳定性影响。研究结果表明:洞顶沉降主要发生在距离隧道左右两侧大约0.5倍洞径处,地表沉降主要发生在距隧道轴线0~35 m范围内。3种不同开挖方式主要影响了隧道拱顶沉降与拱底隆起变形程度,其中环形开挖留核心土法>上下台阶挖掘法>全截面挖掘法。结合地质雷达检测与现场监测结果表明,采用环形开挖留核心土法施工相对比其他两种开挖方式可有效控制深埋软岩隧道拱顶下沉变形与拱底隆起变形。  相似文献   

20.
为研究地铁深基坑邻近隧道施工时既有隧道的受力与变形特性,以南京地铁9号线管子桥站基坑工程为背景,通过三维有限元分析,研究基坑开挖引起的既有隧道的受力与变形特性,计算结果表明:地铁基坑开挖引起的既有隧道最大沉降值为7.32 mm,最大水平位移为5.74 mm,隧道变形满足相关规范要求;隧道主体沿Y方向和Z方向产生的位移远大于沿X方向产生的位移;基坑开挖时,隧道敞开段与暗埋段会产生沉降差异,施工时应采取相应措施控制沉降差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号