首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At hub airports, dominant airlines/alliance coordinate their flights in time with the aim of increasing the number (and quality) of connections, thus producing a wave‐system in traffic schedules. This paper addresses the impact of concentrating aircraft into waves on airport apron capacity. Existing models for apron capacity estimation are based on the number of stands, stand occupancy time, and demand structure, differing between representative groups of aircraft served at an airport. Criteria for aircraft grouping are aircraft type and/or airline and/or type of service (domestic, international, etc.). Modified deterministic analytical models proposed in this paper also take into account the wave‐system parameters, as well as runway capacity. They include the impact of these parameters on the number of flights in wave, stand occupancy time, and consequently apron capacity. Numerical examples illustrate the difference between apron capacity for an origin–destination airport and a hub airport, under the same conditions; utilization of the theoretical apron capacity at a hub airport, given the wave‐system structure; and utilization of the apron capacity at a hub airport when point‐to‐point traffic is allowed to use idle stands. Furthermore, the influence of different assignment strategies for aircraft stands in the case of hub airports is also discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
We address the robust weekly aircraft routing and retiming problem, which requires determining weekly schedules for a heterogeneous fleet that maximizes the aircraft on-time performance, minimizes the total delay, and minimizes the number of delayed passengers. The fleet is required to serve a set of flights having known departure time windows while satisfying maintenance constraints. All flights are subject to random delays that may propagate through the network. We propose to solve this problem using a hybrid optimization-simulation approach based on a novel mixed-integer nonlinear programming model for the robust weekly aircraft maintenance routing problem. For this model, we provide an equivalent mixed-integer linear programming formulation that can be solved using a commercial solver. Furthermore, we describe a Monte-Carlo-based procedure for sequentially adjusting the flight departure times. We perform an extensive computational study using instances obtained from a major international airline, having up to 3387 flights and 164 aircraft, which demonstrates the efficacy of the proposed approach. Using the simulation software SimAir to assess the robustness of the solutions produced by our approach in comparison with that for the original solutions implemented by the airline, we found that on-time performance was improved by 9.8–16.0%, cumulative delay was reduced by 25.4–33.1%, and the number of delayed passengers was reduced by 8.2–51.6%.  相似文献   

3.
This paper considers the process of aircraft refuelling using refuelling trucks at an airport. The problem which arises is to determine the minimum number of refuelling trucks and their routes for the given demand (schedule and fuel quantities). The constraint is that there is no aircraft departure delay due to the refuelling process. The optimum solution is found here using the branch-and-bound technique. This solution is compared with results obtained on the basis of random assignment and a few conclusions are made. The paper also presents a model application example based on real life data from a medium-sized airport.  相似文献   

4.
The insufficiency of infrastructure capacity in an air transport system is usually blamed for poor punctuality performance when implementing flight schedules. However, investigations have revealed that ground operations of airlines have become the second major cause of flight delay at airports. A stochastic approach is used in this paper to model the operation of aircraft turnaround and the departure punctuality of a turnaround aircraft at an airport. The aircraft turnaround model is then used to investigate the punctuality problem of turnaround aircraft. Model results reveal that the departure punctuality of a turnaround aircraft is influenced by the length of scheduled turnaround time, the arrival punctuality of inbound aircraft as well as the operational efficiency of aircraft ground services. The aircraft turnaround model proposed is then employed to evaluate the endogenous schedule punctuality of two turnaround aircraft. Model results, when compared with observation data, show that the operational efficiency of aircraft ground services varies among turnarounds. Hence, it is recommended that the improvement of departure punctuality of turnaround aircraft may be achieved from two approaches: airline scheduling control and the management of operational efficiency of aircraft ground services.  相似文献   

5.
This paper develops analytical models for calculating the ultimate arrival, departure, and mixed operation capacity of closely-spaced parallel runways. Each capacity is defined as the maximum number of corresponding aircraft operations accommodated during a given period of time (usually one or a quarter of an hour) under constant (i.e. sustained) demand for service. As combined, they enable the capacity coverage curve to be synthesized. In particular, the capacity model for arrivals assumes the use of two rather innovative approach procedures – the Staggered Approach Procedure (SGAP) and the Steeper Approach Procedure (SEAP) in combination with the baseline Conventional Approach Procedure (CNAP) under Instrument Meteorological Conditions (IMC) and Instrumental Flight Rules (IFR).The model for arrival capacity that aims to estimate potential of these procedures uses main inputs such as: the geometry of given parallel runways and innovative SGAP and SEAP, and baseline CNAP; the Air Traffic Control (ATC) minimum separation rules; aircraft fleet mix characterized by the wake-vortex categories; capability of using different ILS Glide (GS) angles; final approach speeds; and the arrival runway occupancy time. In addition, the model for departure capacity uses inputs that embrace: the ATC separation rules between successive departures; aircraft fleet mix; and corresponding runway occupancy times. Finally, the model for mixed operation capacity uses inputs such as: the ATC arrival–departure separation rules; corresponding runway occupancy times; aircraft fleet mix for each type of operations; and proportion of the arrival and departure demand.The models are applied to calculating the ultimate capacity of closely-spaced parallel runways at two large airports, one in Europe and other in the US, assuming safe use of innovative SGAP and SEAP in combination with CNAP under IMC. The output from the models consists of the corresponding capacities and their variations depending on particular inputs.  相似文献   

6.
In response to increasing demand, airlines may increase capacity by increasing the frequency of flights or they may choose to increase aircraft size. This may yield operating cost economies. If the airports they operate from are capacity constrained, they will be limited in the extent that they can change frequency which will limit their ability to compete with the number of frequencies offered. This article focuses on this trade-off and pays particular attention to the practices of a specific airline. Conclusions are offered on the impact of inter alia competition, changes in aircraft technology, 9/11 and the impact of slot constraints. It appears that changes in size are more important than frequency, which is consistent with the presence of slot constraints and there is a significant impact of competition. As the concentration of carriers increases, so aircraft size falls. 9/11 also has a significant impact on traffic whereas the introduction of the Boeing 777, as an illustration of a change in technology, does not.  相似文献   

7.
Abstract

This paper develops a heuristic algorithm for the allocation of airport runway capacity to minimise the cost of arrival and departure aircraft/flight delays. The algorithm is developed as a potential alternative to optimisation models based on linear and integer programming. The algorithm is based on heuristic (‘greedy’) criteria that closely reflect the ‘rules of thumb’ used by air traffic controllers. Using inputs such as arrival and departure demand, airport runway system capacity envelopes and cost of aircraft/flight delays, the main output minimises the cost of arrival and departure delays as well as the corresponding interdependent airport runway system arrival and departure capacity allocation. The algorithm is applied to traffic scenarios at three busy US airports. The results are used to validate the performance of the proposed heuristic algorithm against results from selected benchmarking optimisation models.  相似文献   

8.

As air transport demand keeps growing more quickly than system capacity, efficient and effective management of system capacity becomes essential to the operation of the future global air traffic system. Although research in the past two decades has made significant progress in relevant research fields, e.g. air traffic flow management and airport capacity modelling, research loopholes in air traffic management still exist and links between different research areas are required to enhance the system performance of air traffic management. Hence, the objective of this paper is to review systematically current research in the literature about the issue of air traffic management to prioritize productive research areas. Papers about air traffic management are discussed and categorized into two levels: system and airport. The system level of air transport research includes two main topics: air traffic flow management and airspace research. On the airport level, research topics are: airport capacity, airport facility utilization, aircraft operations in the airport terminal manoeuvring area as well as aircraft ground operations research. Potential research interests to focus on in the future are the integration between airspace capacity and airport capacity, the establishment of airport information systems to use airport capacity better, and the improvement in flight schedule planning to improve the reliability of schedule implementation.  相似文献   

9.
Accurate prediction of aircraft position is becoming more and more important for the future of air traffic. Currently, the lack of information about flights prevents us to fulfill future demands for the needed accuracy in 4D trajectory prediction. Until we get the necessary information from aircraft and until new more accurate methods are implemented and used, we propose an alternative method for predicting aircraft performances using machine learning from historical data about past flights collected in a multidimensional database. In that way, we can improve existing applications by providing them better inputs for their trajectory calculations. Our method uses flight plan data to predict performance values, which are suited individually for each flight. The results show that based on recorded past aircraft performances and related flight data we can effectively predict performances for future flights based on how similar flights behaved in the past.  相似文献   

10.
This paper introduces a linear holding strategy based on prior works on cruise speed reduction, aimed at performing airborne delay at no extra fuel cost, as a complementary strategy to current ground and airborne holding strategies. Firstly, the equivalent speed concept is extended to climb and descent phases through an analysis of fuel consumption and speed from aircraft performance data. This gives an insight of the feasibility to implement the concept, differentiating the case where the cruise flight level initially requested is kept and the case where it can be changed before departure in order to maximize the linear holding time. Illustrative examples are given, where typical flights are simulated using an optimal trajectory generation tool where linear holding is maximized while keeping constant the initially planned fuel. Finally, the effects of linear holding are thoroughly assessed in terms of the vertical trajectory profiles, range of feasible speed intervals and trade-offs between fuel and time. Results show that the airborne delay increases significantly with nearly 3-fold time for short-haul flights and 2-fold for mid-hauls to the cases in prior works.  相似文献   

11.
This paper introduces an empirically driven, non-parametric method to isolate and estimate the effects that changes in demand and changes in throughput have on delay – in particular, arrival and departure flight delay at airport runways. Classic queuing concepts were used to develop a method by which an intermediate, or counterfactual, queuing scenario could be constructed, to isolate the delay effects due to shifts in demand and throughput. This method includes the development of a stochastic throughput function that is based entirely on data and has three key features. Firstly, the function relies on non-parametric, empirically-based probability distributions of throughput counts. Secondly, facility capacity needs not be explicitly defined, as it is implicitly included in the probability distributions of throughput. Thirdly, the throughput performance function preserves the effect of factors that cause capacity (and, therefore, throughput) to fluctuate over a given period. Temporal sequences of high, moderate, and low capacity are maintained between the observed and counterfactual scenarios. The method was applied to a case study of the three major New York area airports of LaGuardia (LGA), Newark Liberty (EWR), and John F. Kennedy (JFK), using operational data extracted from the Federal Aviation Administration’s (FAA’s) Aviation System Performance Metrics (ASPM) database. The focus was on the peak summer travel seasons of 2006 and 2007, as these airports experienced record levels of delay in 2007. The results indicate that decreases in both demand and throughput were experienced at LGA and EWR, although the decreases in throughput had more significant effects on operational delays as they increased overall at these airports. At JFK, the increase in departure throughput was not sufficient to offset the increase in departure demands. For arrivals, demand increased and throughput decreased. These trends caused a significant growth in delay at JFK between 2006 and 2007.  相似文献   

12.
In this paper, we study two closely related airline planning problems: the robust weekly aircraft maintenance routing problem (RWAMRP) and the tail assignment problem (TAP). In real life operations, the RWAMRP solution is used in tactical planning whereas the TAP solution is implemented in operational planning. The main objective of these two problems is to minimize the total expected propagated delay (EPD) of the aircraft routes. To formulate the RWAMRP, we propose a novel weekly line-of-flights (LOF) network model that can handle complex and nonlinear cost functions of EPD. Because the number of LOFs grows exponentially with the number of flights to be scheduled, we propose a two-stage column generation approach to efficiently solve large-scale real-life RWAMRPs. Because the EPD of an LOF is highly nonlinear and can be very time-consuming to accurately compute, we propose three lower bounds on the EPD to solve the pricing subproblem of the column generation. Our approach is tested on eight real-life test instances. The computational results show that the proposed approach provides very tight LP relaxation (within 0.6% of optimal solutions) and solves the test case with more than 6000 flights per week in less than three hours. We also investigate the solutions obtained by our approach over 500 simulated realizations. The simulation results demonstrate that, in all eight test instances, our solutions result in less EPDs than those obtained from traditional methods. We then extend our model and solution approach to solve realistically simulated TAP instances.  相似文献   

13.
This paper analyzes benefits from aviation infrastructure investment under competitive supply-demand equilibrium. The analysis recognizes that, in the air transportation system where economies of density is an inherent characteristic, capacity change would trigger a complicated set of adjustment of and interplay among passenger demand, air fare, flight frequency, aircraft size, and flight delays, leading to an equilibrium shift. An analytical model that incorporates these elements is developed. The results from comparative static analysis show that capacity constraint suppresses demand, reduces flight frequency, and increases passenger generalized cost. Our numerical analysis further reveals that, by switching to larger aircraft size, airlines manage to offset part of the delay effect on unit operating cost, and charge passengers lower fare. With higher capacity, airlines tend to raise both fare and frequency while decreasing aircraft size. More demand emerges in the market, with reduced generalized cost for each traveler. The marginal benefit brought by capacity expansion diminishes as the capacity-demand imbalance becomes less severe. Existing passengers in the market receive most of the benefit, followed by airlines. The welfare gains from induced demand are much smaller. The equilibrium approach yields more plausible investment benefit estimates than does the conventional method. In particular, when forecasting future demand the equilibrium approach is capable of preventing the occurrence of excessive high delays.  相似文献   

14.
The task of assigning arriving flights at an airport to the available gates is a key activity in airline station operations. With the development of large connecting hub operations, and the resulting volumes of passengers and baggage transferring between flights, the complexity of the task and the number of factors to be considered have increased significantly. Traditional approaches utilizing classical operations research techniques have difficulty with uncertain information and multiple performance criteria, and do not adapt well to the needs of real-time operations support. As a result, several airlines have been exploring the use of expert systems for operational control of ramp activity.This paper discusses the factors that arise in deciding how to allocate flights to gates, and describes the knowledge base structure, data requirements and inference process of an expert system that would recommend gate allocation decisions to ramp control personnel, taking into account the constraints imposed by the available facilities and personnel to handle the aircraft, and the consequences on downstream operations of particular assignment decisions. The paper describes how these concepts have been implemented in a prototype expert system that has been designed to address a restricted set of gate assignment issues within a framework that could be extended to consider a broader range of factors. The operation of the expert system is illustrated through a case study application to a typical flight schedule at a major hub airport.  相似文献   

15.
Airspace Flow Programs (AFPs) assign ground delays to flights in order to limit flow through capacity constrained airspace regions. AFPs have been successful in controlling traffic with reasonable delays, but a new program called the Combined Trajectory Options Program, or CTOP, is being explored to further accommodate projected increases in traffic demand. In CTOP, centrally managed rerouting and user preference inputs are also incorporated into initial en route resource allocations. We investigate four alternative versions of resource allocation within CTOP in this research, under differing assumptions about the degree of random variability in airline flight assignment costs when measured against a simple model based upon the flight specific, but otherwise fixed, ratio of airborne flight time and ground delay unit cost. Two en route resource allocation schemes are based on ordered assignments that are similar to those used currently, and the other two are system-optimal assignment schemes. One of these system-optimal schemes is based on complete preference information, which is ideal but not realistic, and the other is based on partial information that may be feasible to implement but yields less efficient assignments. The main contribution of this research is a methodological framework to evaluate and compare these alternative en route resource allocation schemes, under varying assumptions about the information traffic managers have been provided about the flight operators’ route preferences. The framework allows us to evaluate these various schemes under differing assumptions about how well the traffic managers’ flight cost model captures flight costs. A numerical example demonstrates that a sequential resource allocation scheme – where flights are assigned resources in the order in which preference information is submitted – can be more efficient than a scheme that offers a cost minimizing allocation based on less complete preference information, and may at the same time be perceived as equitable. We also find that assigning resources in the order flights are scheduled results in less efficient allocations, but more equitable ones.  相似文献   

16.
Abstract

When disturbances make it impossible to realise the planned flight schedule, the dispatcher at the airline operational centre defines a new flight schedule based on airline policy, in order to reduce the negative effects of these perturbations. Depending on airline policy, when designing the new flight schedule, the dispatcher delays or cancels some flights and reassigns some flights to available aircraft. In this paper, a decision support system (DSS) for solving the airline schedule disturbances problem is developed aiming to assist decision makers in handling disturbances in real-time. The system is based on a heuristic algorithm, which generates a list of different feasible schedules ordered according to the value of an objective function. The dispatcher can thus select and implement one of them. In this paper, the possibilities of DSS are illustrated by real numerical examples that concern JAT Airways' flight schedule disturbances.  相似文献   

17.
Aircraft mass is a crucial piece of information for studies on aircraft performance, trajectory prediction, and many other topics of aircraft traffic management. However, It is a common challenge for researchers, as well as air traffic control, to access this proprietary information. Previously, several studies have proposed methods to estimate aircraft weight based on specific parts of the flight. Due to inaccurate input data or biased assumptions, this often leads to less confident or inaccurate estimations. In this paper, combined with a fuel-flow model, different aircraft initial masses are computed independently using the total energy model and reference model at first. It then adopts a Bayesian approach that uses a prior probability of aircraft mass based on empirical knowledge and computed aircraft initial masses to produce the maximum a posteriori estimation. Variation in results caused by dependent factors such as prior, thrust and wind are also studied. The method is validated using 50 test flights of a Cessna Citation II aircraft, for which measurements of the true mass were available. The validation results show a mean absolute error of 4.3% of the actual aircraft mass.  相似文献   

18.
This paper analyzes strategic interaction between intercontinental airport regulators, each of which levies airport charges paid by airlines and chooses its airport capacity under conditions of congestion. Congestion from intercontinental flights is common across intercontinental airports since departure and arrival airports are linked one to one, while purely domestic traffic also uses each airport. The paper focuses on two questions. First, if both continents can strategically set separate airport charges for domestic and intercontinental flights, how will the outcome differ from the first-best solution? Second, how is strategic airport behavior affected by the extent of market power of the airlines serving the intercontinental market? We see that strategic airport pricing and capacity choices by regulators lead to a welfare loss: the regulators both behave as monopolists in the market for intercontinental flights, charging a mark-up and decreasing capacity. This welfare loss even overshadows possible negative effects from imperfect competition within the intercontinental airline market. We further discuss how the presence of multiple regulators on one continent or a simple pricing rule might constrain the welfare loss created by strategic airport regulation.  相似文献   

19.
Current air traffic control systems are mainly conceived to ensure the safety of flights by means of tactical interventions, because of the difficulty of accurately foreseeing the traffic evolution. In fact, in real traffic conditions, planes are often penalized since sometimes safety standards are redundant. Today, this management philosophy is no longer valid because of congestion phenomena which often occur in the most important terminal areas. Therefore, as to future control systems it is necessary to introduce not only more automated procedures to keep adequate safety levels, but also planning functions in order to increase the system capacity and to improve system efficiency. In recent years several studies have been carried out, new control concepts have been introduced and some optimization models and algorithms developed to improve air traffic management. In this paper a survey of our early works in this field is reported and a multilevel model of air traffic management is proposed and discussed. The functions corresponding to the on-line control, that is flow control, strategic control of flights and aircraft sequencing in a terminal area, are examined and the optimization models and solution algorithms are illustrated. Finally, relevant problems coped by recent research are mentioned and new trends are indicated.  相似文献   

20.

An important decision faced by airline schedulers is how to adapt the flight schedule and aircraft assignment to unforeseen perturbations in an established schedule. In the face of unforeseen aircraft delays, schedulers have to decide which flights to delay, and when delays become excessive, which to cancel. Current scheduling models deal with simple decision problems of delay or cancellation, but not with both simultaneously. But in practice the optimal decision may involve results from the integration of both flight cancellations and delays. In Part I of this paper, a quadratic programming model for the integration decision problem is given. The model can formulate the integration of flight cancellations and delays as well as some special cases, such as the ferrying of surplus aircraft and the possibility of swapping different types of aircraft. In this paper, based on the special structure of the model, an effective algorithm is presented, sufficient computational experiments are conducted and some results are reported. These show that we can expect to obtain a sufficiently good solution in terms of reasonable CPU time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号