首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以一座自锚式斜拉——悬索协作体系桥的设计方案为研究背景,基于蒙特卡洛方法对实测车辆荷载进行模拟获得随机车流荷载队列,建立空间有限元模型提取典型位置的斜拉索和吊索的影响线,在影响线上施加随机车流荷载获得拉索的应力历程和应力幅值统计,按照Miner线性累积损伤理论计算了拉索静态疲劳累积损伤,考虑钢丝锈蚀和交通流增长的动态影响因素,计算了拉索随服役年限增长的动态疲劳累积损伤。分析结果表明,成桥运营期协作体系的最短的中跨斜拉索最易发生疲劳问题,吊索不易发生疲劳破坏;斜——吊索混合区的拉索相比纯斜拉区和悬索区拉索并无显著疲劳损伤;锈蚀因素对拉索的疲劳问题起关键作用,需重点做好拉索的防腐工作。  相似文献   

2.
为了预测沿海大跨度斜拉桥拉索在车流、风和波浪等变幅荷载长期作用下的疲劳寿命,提出了沿海大跨斜拉桥拉索在随机车流、风和波浪荷载联合作用下拉索应力谱的计算方法和步骤,并基于线性疲劳累积损伤理论建立了斜拉桥拉索疲劳可靠度的计算框架。首先,根据桥上实测车流数据,建立了随机车流模型,基于桥址处风浪观测数据,运用二维Copula函数建立了桥址处风浪联合概率模型。然后,将生成的随机车流及风浪荷载作为外部激励,基于风-浪-车-桥耦合振动数值模拟平台,实现随机车流、风、浪荷载联合作用下的斜拉索应力谱的计算分析。最后,基于线性疲劳累积损伤理论推导了服役期内斜拉索疲劳可靠度及疲劳寿命预测公式,并以一座沿海大跨斜拉桥为例,结合桥址处的实测车流、风和波浪数据,计算了拉索在随机车流、风和波浪荷载联合作用下关键拉索的疲劳寿命。结果表明:车辆荷载主要影响拉索的应力响应均值,风荷载主要影响拉索的应力响应的脉动部分,而波浪荷载对拉索的应力响应影响非常小,可以忽略。此外,在随机车辆、风和波浪荷载共同作用下,拉索的日累积疲劳损伤符合威布尔分布,并且岸侧拉索的中间索疲劳寿命最低,为121年。研究成果可为沿海大跨度斜拉桥拉索疲劳可靠度分析及疲劳寿命预测研究提供参考。  相似文献   

3.
以苏通大桥第J32号斜拉索为分析对象,对其疲劳荷载谱计算方法进行研究。分别采用单一疲劳车和车道折减等2种不同移动疲劳荷载模型计算斜拉索等效疲劳应力幅值,并对其结果的合理性进行对比分析。得出结论:对于大跨度斜拉桥,采用车道折减荷载分析斜拉索轴向疲劳应力较为理想。  相似文献   

4.
引入车流-桥梁耦合振动模型至桥梁结构可靠度分析中,提出了随机车流作用下大跨桥梁动力响应的简化分析方法,应用于桥梁动力位移极值外推与首超失效概率评估。基于中国某高速公路的动态称重数据,模拟了稀疏和密集状态的随机车流,建立了主跨为200m连续刚构桥梁的车载效应概率模型。工程实例分析结果表明:随机车流-桥梁耦合振动分析结果为时程曲线,可视为随机过程的一个样本,而Rice公式可捕捉到该曲线的概率特征,可用于研究考虑车流-桥梁耦合振动效应的极值外推;随着输入车流样本的增长,桥梁响应均值与标准差趋于稳定,随机车流作用下大跨桥梁的荷载效应满足平稳随机过程假定;连续刚构桥在密集车流作用下的关键失效点位于中跨跨中,当现有密集车流占有率由1.2%增大到3.6%时,该桥梁的位移首超可靠指标从5.76下降至5.60。  相似文献   

5.
为研究重载交通下既有斜拉桥斜拉索的疲劳安全水平,提出基于实测车流数据的斜拉索疲劳可靠度评估方法,在某高速公路桥梁重载车流监测数据的基础上建立随机疲劳车流模型,加载至斜拉索的应力影响线,由雨流计数方法计算提取疲劳应力谱,采用高斯混合模型拟合疲劳应力概率密度函数;以主跨420m砼双塔斜拉桥为工程背景,评估交通荷载增长情况下斜拉索的疲劳可靠度。结果表明,当交通量年线性增长率由零增长到0.5%时,斜拉索第100年的疲劳可靠度由5.10下降至0.92;当车重年线性增长率由零增长至0.5%时,疲劳可靠度由5.10下降至0.84。  相似文献   

6.
为了精确计算垂度效应引起的超长斜拉索刚度折减,基于无弹性悬链线理论和弹性悬链线理论分别建立了斜拉索等效弹性模量的数值算法和简化公式算法。利用沪通长江大桥最长斜拉索作为算例,对比分析了该文方法与传统Ernst公式的计算精度。结果表明:Ernst公式对于低应力水平的斜拉索精度不高,误差高于10%,甚至高达17%;随着应力的增大,误差逐渐减小到1%以内。该文简化公式算法误差不超过0.3%,精度高于Ernst公式。Ernst公式计算结果高于数值解,而该文简化公式计算结果略低于数值解。索受力前后线密度的变化对等效弹性模量的影响可忽略不计。  相似文献   

7.
为评估现有车辆荷载作用下中小跨桥梁的安全水平,提出了车辆荷载冲击作用下桥梁效应极值外推方法。基于高速公路车辆动态称重数据,研究了简支T梁桥的车载动力效应极值,校验并评估了现有车辆荷载作用下中小跨桥梁的安全水平。研究结果表明:基于实测数据的随机车流模型融入了车辆的概率信息,为桥梁车载动力效应极值的概率外推提供了有利条件;欧洲与英国规范的设计车辆荷载效应的重现期远大于美国和中国设计规范;随着桥梁跨度的增加,欧洲与美国荷载模型的重现期随着桥梁跨度的增加而减小,英国荷载模型随桥梁跨度的增加呈先增加后减小的趋势,中国荷载模型的重现期随桥梁跨度增加而增加。  相似文献   

8.
Rice公式外推桥梁荷载效应   总被引:1,自引:0,他引:1  
在当今,如何对桥梁进行合理评估已成为桥梁工作者的一个重要课题。而在桥梁评估过程中,科研工作者往往需要定量描述评估周期内某座桥梁的交通车辆荷载大小,一般用荷载效应描述。就此根据动态称重系统实测的107国道路段交通荷载数据产生的模拟车流对评估周期内荷载效应极值的计算方法进行了初步研究,以各种跨径简支梁为例,利用Rice外推理论外推各个观测周期的荷载效应极值,并以此作为建立评估荷载模型的基础。  相似文献   

9.
为了解风荷载和车辆荷载作用下斜拉索的位移响应,以某双塔斜拉桥为例,建立斜拉索的有限元模型,采用时域抖振分析和车-桥耦合振动分析方法,得到风荷载和车辆荷载作用下斜拉索的索端位移激励,对斜拉索参数振动进行分析,分别讨论了不同方向索端位移激励下斜拉索的位移响应,并分析了风速及车速的影响。结果表明:风荷载引起的随机位移激励作用下,斜拉索的位移响应随风速的增加逐渐增大,但较正弦激励作用下的响应小;车辆荷载引起的随机位移激励对斜拉索中点的位移响应影响很小;顺桥向的随机位移激励对斜拉索的垂向位移响应影响较大,横桥向的随机位移激励对其影响较小。  相似文献   

10.
以经典弦振动理论为基础,建立斜拉索振动分析的有限元模型,提出考虑抗弯刚度的斜拉索平衡索曲线迭代计算方法.讨论抗弯刚度对斜拉索平衡索曲线的影响,绘制出距垂比随拉弯刚度比的变化曲线,得出了斜拉索的垂度随抗弯刚度的增大而减小的变化规律.针对西昌斜拉桥25对斜拉索的模态进行精确分析,以有限元的方法验证了斜拉索的模态超越现象,分别绘制频率和振型随索力的变化曲线,归纳索频率变化规律,提出索力测量的实用计算方法,采用频差法来判断实测各阶频率的阶数,并且以第2阶频率来进行索力计算.经工程实例验证,考虑抗弯刚度的斜拉索平衡索曲线迭代计算方法可以有效排除由模态超越带来的索力计算偏差,适用于各种长度的斜拉索以及在施工过程中各阶段的索力测量计算.  相似文献   

11.
在中国交通荷载急剧增长的现实情况下,重载交通下既有桥梁的结构安全问题日益突出。为了推测实际车流长期作用下的桥梁最大荷载效应,提出了基于随机车流的桥梁作用效应极值概率分析方法。首先,基于某高速公路车辆的动态称重数据建立了随机车流荷载模型,并提取了关键车队加载工况;其次,模拟了某悬索桥的车桥耦合振动效应的位移时程曲线,建立了最优的Rice界限跨阈率模型;最后,分析了交通量线性增长对桥梁极值的影响,校验了设计作用标准值。数值分析结果表明:Rice界限跨阈率模型可捕捉车辆荷载的动力效应,从而实现动力效应极值分析;当交通量的年线性增长率为4%时,桥梁位移极值增加约7.7%,极值增长速率逐步降低;在设计标准值的1950年重现期条件下,某悬索桥的位移极值上限为1.9 m,满足变形上限L/300的要求。  相似文献   

12.
随着斜拉桥跨径的不断增大,风荷载越来越成为结构设计的控制因素,其中拉索所受风荷载占了较大的比例,已经超过了主梁。由于缺乏理论研究和试验验证,过去斜拉索纵桥向风荷载计算方法在我国设计规范中没有明确规定,设计过程中也都采取了过分保守的简单计算,导致结构设计的经济合理性较差。为此,苏通大桥在设计过程中专门对斜拉索进行了测力试验,结合与国外相关研究成果的对比,提出了斜拉索纵桥向风荷载阻力系数计算公式,填补了我国桥梁抗风设计规范的空白,已被纳入《公路桥梁抗风设计规范》(JTG/T D 60-01-2004),具有很高的实际指导意义。文中介绍了风荷载的研究过程及研究结论,以使同行对此有一个深入的了解。  相似文献   

13.
为了研究实际车流作用下既有桥梁的安全水平,提出基于随机车流模型的桥梁车载效应极值外推方法,并采用长期模拟数据校验外推极值的精度。以典型数值算例为例验证了所提方法的有效性,并由拱桥的算例分析验证了该方法的适用性。研究结果表明:随机车流荷载模型融入了实际车流的概率特征,可用于生成桥梁车载效应极值概率模型所需的大量样本数据;基于广义极值分布函数的外推结果精度与拟合样本点时长有关,在样本点时长大于外推时长时方可保证外推结果误差为1%;交通量增长对桥梁车载效应极值外推有较大的影响,某拱桥的日交通量年增长系数为6%,导致最大值增长幅度为9.5%。  相似文献   

14.
小西湖矮塔斜拉桥的特征参数研究   总被引:2,自引:0,他引:2  
结合小西湖双塔三跨斜拉桥活载作用下的结构反应,引入斜拉索荷载效应影响度的概念定量分析了矮塔斜拉桥斜拉索作用的实质,并据此提炼出能综合反映矮塔斜拉桥结构及受力特征的参数———矮塔斜拉桥特征参数;用斜拉索荷载效应影响度与矮塔斜拉桥特征参数的相关性定量描述矮塔斜拉桥的特点,对进一步认识矮塔斜拉桥的结构性能有一定的参考意义。  相似文献   

15.
为了解决大跨度桥梁在随机车辆荷载和风荷载作用下局部应力求解耗时问题,首先以矮寨大桥为工程背景,建立壳-梁混合单元有限元模型,确定大桥应力的关键位置及关键点,采用分段拟合方法获得随机车辆荷载的影响面函数和风荷载的影响线函数;结合吉茶高速实际交通量特征及随机参数分布特征,采用蒙特卡罗方法,编制抽样程序生成随机车流样本。其次采用风-车-桥耦合振动分析获得典型车辆的等效车辆荷载;引入风荷载动力影响系数,提出了一种简便实用的随机车流下大跨度桥梁风致应力分析方法。最后应用ANSYS计算分析结果验证所提方法的正确可行性,分析矮寨大桥在随机车流和风荷载联合作用下的关键点应力响应。结果表明:风速低于15 m·s-1时,风荷载引起大桥关键点应力响应远小于车辆荷载引起的应力响应;繁忙车流下应力响应的幅值并不比稀疏车流下的应力幅值大很多,但是繁忙车流下应力响应的峰值数量远大于稀疏车流下的峰值数量,即应力的循环次数多,会增大桥梁的疲劳损伤。  相似文献   

16.
为更高效、智能地分析斜拉索的可靠度,结合果蝇优化算法(FOA)和支持向量回归(SVR)提出FOA-SVR响应面法,用于拟合斜拉索的隐式非线性功能函数,并提出关联系数以提高算法的寻优能力和智能性,同时提出PQN法以快速求解可靠指标,得到基于FOA-SVR响应面法的斜拉索可靠度分析方法。结合算例将该方法与传统方法进行对比验证,该方法的精度较高,总体运算效率可提升92%。采用该方法对某独塔斜拉桥斜拉索进行可靠度分析,结果表明:该方法在斜拉索可靠度分析中具有良好的适用性,平均运算效率提高90%,同时人工调试量少,对不同斜拉索通用性强,智能化程度高;独塔斜拉桥在汽车荷载右跨满布时,右跨最长索可靠度最低,但右跨其余斜拉索可靠度相较左跨对称斜拉索更高;对于右跨最长索的可靠指标,影响程度较大的随机变量依次为斜拉索的强度、弹性模量和截面面积。  相似文献   

17.
《公路》2015,(12)
矮塔斜拉桥的斜拉索采用平行钢绞线,钢绞线使用单根张拉。基于斜拉索全部张拉完后每一根钢绞线的力值达到均值,通过按斜拉索施工的逆顺序建立拉索的平衡方程,推导出计算每一根钢绞线张拉控制力的公式,并对其进行温度修正。修正的公式正确反映了主梁和斜拉索的温度效应。此计算方法运用于瑞丽江特大桥工程实例中,与Midas/civil2012有限元计算结果对比,最大误差为0.9%。结果表明,此种计算方法具有科学、准确、简单等优点,能够达到斜拉索单根张拉均匀性的目的,同时为同类型桥梁的设计施工提供经验。  相似文献   

18.
为准确地评定斜拉索的耐久性,指导斜拉索养护,提出一种针对平行钢丝斜拉索耐久性的评定方法。该方法建立在已有的均匀腐蚀厚度和局部点蚀深度概率研究的基础上,利用有限元分析结果拟合得到钢丝承载力与腐蚀程度的对应公式,并通过概率理论推导得出了服役若干年后钢丝承载力和斜拉索承载力的概率模型。某在建斜拉桥斜拉索设计寿命30年,采用该方法评估了其20年、30年和40年的耐久性,通过具体算例演示验证了该评定方法的可行性和应用价值。该评定方法可以预估和评价在不同服役年龄时斜拉索的强度,为斜拉索养护措施的选择和换索时机的确定提供参考。  相似文献   

19.
分阶段施工实际上是斜拉桥结构体系与作用于结构上的荷载不断变化的过程.施工工序的变化引起荷载的变化,结构上荷载的变化改变着斜拉索的索力,斜拉索的主动调索表面上是改变着斜拉索的索力,而本质上是改变了斜拉索的无应力长度.按照无应力状态控制法最终结构的内力和线形与施工过程无关的基本原理,可以实现斜拉桥施工中斜拉索调索与其他工序同步并行作业.  相似文献   

20.
为明确长安街西延永定河大桥斜拉索的风雨振特性,提出有效的减振措施;进行斜拉索风雨振计算分析,并通过风洞试验分析风速和雨强对斜拉索风雨振的影响;研究不同阻尼比和斜拉索表面缠绕双螺旋线的减振效果。结果表明:该桥大部分斜拉索在不采取减振措施的情况下有发生风雨振的可能;斜拉索风雨振的振幅随着风速的增大先增大后减小,随着雨强的增大逐渐减小;增大阻尼比能有效减小斜拉索风雨振的振幅。建议该桥斜拉索安装阻尼器时,阻尼比不小于0.9%;当螺旋线的直径为1.2mm时,单根螺旋线的间距取6倍的斜拉索直径;当单根螺旋线的间距为12倍的斜拉索直径时,螺旋线的直径取2.0mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号