首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了预喷射在高压共轨电控直喷式柴油机上控制燃烧噪声的作用。通过试验分析了不同工况下预喷射变量、预喷射定时、预喷射油量及主喷射定时的变化对燃烧噪声产生的影响。基于结果的分析,对预喷射变量进行优化。在以燃烧噪声为目标进行优化的同时,兼顾其对排放和经济性的影响。结果表明,采用预喷射可以明显改善燃烧噪声,在优化了预喷射策略之后,改善效果更明显。采用合理的预喷射策略可以明显降低燃烧噪声和NOx排放,但烟度和燃油消耗率略有增加。  相似文献   

2.
In this paper, the influence of injection parameters on the transition from Premixed Charge Combustion Ignition (PCCI) combustion to conventional diesel combustion was investigated in an optically accessible High-Speed Direct-Injection (HSDI) diesel engine using multiple injection strategies. The heat release characteristics were analyzed using incylinder pressure for different operating conditions. The whole cycle combustion process was visualized with a high-speed video camera by simultaneously capturing the natural flame luminosity from both the bottom of the optical piston and the side window, showing the three dimensional combustion structure within the combustion chamber. Eight operating conditions were selected to address the influences of injection pressure, injection timing, and fuel quantity of the first injection on the development of second injection combustion. For some cases with early first injection timing and a small fuel quantity, no liquid fuel is found when luminous flame points appear, which shows that premixed combustion occurs for these cases. However, with the increase of first injection fuel quantity and retardation of the first injection timing, the combustion mode transitions from PCCI combustion to diffusion flame combustion, with liquid fuel being injected into the hot flame. The observed combustion phenomena are mainly determined by the ambient temperature and pressure at the start of the second injection event. The start-of-injection ambient conditions are greatly influenced by the first injection timing, fuel quantity, and injection pressure. Small fuel quantity and early injection timing of the first injection event and high injection pressure are preferable for low sooting combustion.  相似文献   

3.
进行了通过优化高压共轨系统燃油喷射策略来改善缸内燃烧排放性能的研究,基于AVL Fire软件,针对1015柴油机开展了不同燃油喷射策略下的喷雾燃烧和排放的数值模拟,建立了数学模型并验证了模型的可靠性,分析了一次预喷的预喷时刻、预喷量、主喷提前角对燃烧噪声及排放的影响,揭示了各参数对燃烧噪声和NOx及炭烟生成的影响机理,为进一步优化预喷方案提供了理论依据。  相似文献   

4.
The objective of this work was to investigate the effects of injection conditions and swirl on D.I. diesel combustion using a transparent engine system. The test engine is equipped with a common rail injection system to control injection conditions and to obtain split injection characteristics. A combustion analysis and steady flow test were conducted to measure the heat release rate due to cylinder pressure and the swirl ratio. In addition, spray and diffusion flame images were obtained using a high speed camera. The LII & LIS methods were also used to obtain 2-D soot and droplet distributions. High injection pressure was found to shorten ignition delay, as well as to enhance peak pressure. The results also revealed that the heat release rate in the premixed combustion region was markedly reduced through the use of pilot injection, while the soot distribution and the heat release rate in the diffusion combustion region were increased. The swirl effect was found to shorten ignition delay at certain injection timings, and to enhance the heat release rate in all experimental conditions.  相似文献   

5.
基于1台高压共轨涡轮增压柴油机,采用不同的预喷正时、预喷油量与后喷正时等,研究了多次喷射对燃烧放热、排放生成与燃油经济性的影响,以实现均质压燃和低温燃烧过程。研究结果表明:随预喷正时提前,缸内峰值压力降低,主燃阶段的滞燃期缩短,NOx和炭烟排放均降低;随预喷油量增加,预喷阶段燃烧的放热率和最大压力升高率增大,NOx和HC排放增大,而PM和CO排放降低;随后喷始点推迟,缸内压力与主放热率峰值差异变小,NOx排放降低,但炭烟排放先增大后逐渐降低。  相似文献   

6.
柴油微引燃乙醇发动机采用进气道喷射乙醇、缸内直喷微量柴油引燃的方式进行燃料供给。基于单缸四冲程柴油机,对其燃烧、性能及排放特性进行研究,固定引燃柴油喷射量为发动机能实现压燃着火的最小值,在进气压力为0.15 MPa时比较不同乙醇喷射量的工况组,通过改变柴油喷射时刻进行工况扫描。结果表明,引燃柴油的喷射时刻对发动机的燃烧、性能和排放影响显著。柴油微引燃乙醇发动机在中高负荷能够稳定运行,指示热效率可达34%以上,通过适当调节柴油喷射时刻,可以有效控制未燃碳氢(UHC)、NO_x与CO排放,同时可以实现极低的炭烟排放。柴油微引燃乙醇发动机燃烧模式为预混合或部分预混合燃烧,燃烧有两阶段放热特征,改变引燃柴油喷射时刻,可以有效控制燃烧相位。  相似文献   

7.
This work experimentally investigates how the dwell time between pilot injection and main injection influences combustion and emissions characteristics (NOx, CO, THC and smoke) in a single-cylinder DI diesel engine. The experiments were conducted using two fuel injection systems according to the fuel type, diesel or dimethyl ether (DME), due to the different fuel characteristics. The injection strategy is accomplished by varying the dwell time (10°CA, 16°CA and 22°CA) between injections at five main injection timings (?4°CA aTDC, ?2°CA aTDC, 0°CA aTDC, 2°CA aTDC and 4°CA aTDC). Results from pilot-main injection conditions are compared with those shown in single injection conditions to better demonstrate the potential of pilot injection. It was found that pilot injection is highly effective for lowering heat-release rates with smooth pressure traces regardless of the fuel type. Pilot injection also offers high potential to maintain or increase the BMEP; even the combustion-timing is retarded to suppress the NOx emission formation. Overall, NOx emission formation was suppressed more by the combustion phasing retard effect, and not the pilot injection effect considered in this study. Comparison of the emissions for different fuel types shows that CO and HC emissions have low values below 100 ppm for DME operation in both single injection and pilot-main injection. However, NOx emission is slightly higher in the earlier main injection timings (?4°CA aTDC, ?2°CA aTDC) than diesel injections. Pilot injection was found to be more effective with DME for reducing the amount of NOx emission with combustion retardation, which indicates a level of NOx emission similar to that of diesel. Although the diesel pilot-main injection conditions show higher smoke emission than single-injection condition, DME has little smoke emission regardless of injection strategy.  相似文献   

8.
针对1台6缸增压中冷电控高压共轨柴油机,在不改变原柴油机结构和喷油参数的条件下,研究了生物柴油的掺混比例对发动机燃烧特性的影响。结果表明:小负荷时发动机有预喷射,随着生物柴油掺混比的增大,生物柴油-柴油混合燃料的滞燃期缩短、缸内最高燃烧压力下降,预喷阶段压力升高率峰值和瞬时燃烧放热率峰值减小,且对应的相位提前;主喷阶段压力升高率峰值和瞬时燃烧放热率峰值增大,且对应的相位后移。随着负荷的增大,发动机喷油策略改为单次喷射,随着生物柴油掺混比的增大,缸内最高燃烧压力下降,燃烧持续期缩短,压力升高率峰值略有增大,瞬时燃烧放热率峰值逐渐减小且对应的相位前移。两种不同负荷条件下,随着生物柴油掺混比的增大,混合燃料的指示热效率逐渐下降。  相似文献   

9.
根据柴油机后喷射作用机理,以有效降低燃烧噪声、减少排放为目的,分析设计高压共轨燃油喷射系统后喷射控制策略,解决后喷射控制中有关喷射协调、后喷射量、喷射起始时刻、喷射器作用时间和喷射释放以及相关参数修正等问题。  相似文献   

10.
This paper focuses on the mechanisms of combustion noise during the accelerating operation of multi-cylinder diesel engines using testing technology for the transient conditions of IC engines. Based on impact factors, such as the gas dynamic load and cylinder pressure oscillations, tests and analysis of the combustion noise during transient and steady-state conditions for different loads are made on four-cylinder naturally aspirated engines, turbocharged engines, EGR-introduced engines, and high pressure common rail engines. The laws of combustion noise difference for the same engine speed and load are researched during transient and steady-state conditions. It is found that during transient conditions, the maximum pressure rise rate and the high frequency oscillation amplitude of the cylinder pressure are all higher than those observed during steadystate conditions for the same engine speed and load. With their joint action, the combustion noise during transient conditions is greater than that during steady-state conditions. Turbocharging is useful in reducing the combustion noise during transient conditions. Turbocharging has a better effect on the control over the combustion noise during transient conditions with a constant engine speed and an increasing torque than in conditions with a constant torque and an increasing engine speed. One of the main reasons for different control effects on the combustion noise is that turbocharging causes different wall temperatures inside combustion chambers. The introduction of the appropriate EGR is helpful in the reduction of the combustion noise during transient conditions. The key to the control of combustion noise with EGR during transient conditions is whether a real-time adjustment to the EGR rate can be made to achieve the optimization of the EGR rates for different transient conditions. By means of analyzing the differences in the combustion noise between the transient and steady-state conditions for different pilot injection controls, we obtain a strategy for controlling the combustion noise during transient conditions with a pilot injection. Compared with the steady-state conditions, a larger pilot injection quantity and a longer interval between the main injection and pilot injection should be selected for transient conditions, and this is verified through tests.  相似文献   

11.
In this work a two-stroke scooter engine was modified to work with semi-direct injection of gasoline at a pressure of 8 bar from an injector in the cylinder barrel pointed toward the cylinder head. The influence of injection timing, injection pressure, spark plug location and air-fuel ratio, on performance, emissions and combustion characteristics has been investigated. In addition, a comparison has been made with manifold injection of gasoline on the same engine at a given speed and various outputs. A significant reduction in HC emissions and fuel consumption with no adverse effects on NOx emissions and combustion stability was observed. A small drop in power and increase in CO emission were observed disadvantages of the new injection system. Injection timing was found to be the most important factor and a balance between reduction in shortcircuited fuel by late injection, and time for mixture preparation by advancing the injection, was found to be essential.  相似文献   

12.
An optically accessible single-cylinder high speed direct-injection (HSDI) Diesel engine equipped with a Bosch common rail injection system was used to study low temperature Modulated Kinetics (MK) combustion with a retarded single main injection. High-speed liquid fuel Mie-scattering was employed to investigate the liquid distribution and evolution. By carefully setting up the optics, three-dimensional images of fuel spray were obtained from both the bottom of the piston and the side window. The NOx emissions were measured in the exhaust pipe. The influence of injection pressure and injection timing on liquid fuel evolution and combustion characteristics was studied under similar fuel quantities. Interesting spray development was seen from the side window images. Liquid impingement was found for all of the cases due to the small diameter of the piston bowl. The liquid fuel tip hits the bowl wall obliquely and spreads as a wall jet in the radial direction of the spray. Due to the bowl geometry, the fuel film moves back into the central part of the bowl, which enhances the air-fuel mixing process and prepares a more homogeneous air-fuel mixture. Stronger impingement was seen for high injection pressures. Injection timing had little effect on fuel impingement. No liquid fuel was seen before ignition, indicating premixed combustion for all the cases. High-speed combustion video was taken using the same frame rate. Ignition was seen to occur on or near the bowl wall in the vicinity of the spray tip, with the ignition delay being noticeably longer for lower injection pressure and later injection timing. The majority of the flame was confined to the bowl region throughout the combustion event. A more homogeneous and weaker flame was observed for higher injection pressures and later injection timing. The combustion structure also proves the mixing enhancement effect of the liquid fuel impingement. The results show that ultra-low sooting combustion is feasible in an HSDI diesel engine with a higher injection pressure, a higher EGR rate, or later injection timing, with little penalty on power output. It was also found that injection timing has more influence on HCCI-like combustion using a single main injection than the other two factors studied. Compared with the base cases, simultaneous reductions of soot and NOx were obtained by increasing EGR rate and retarding injection timing. By increasing injection pressure, NOx emissions were increased due to leaner and faster combustion with better air-fuel mixing. However, smoke emissions were significantly reduced with increased injection pressure.  相似文献   

13.
高压共轨系统预喷控制策略研究   总被引:1,自引:0,他引:1  
柴油机高压共轨燃油喷射系统可实现预喷、主喷和后喷的多次喷射,达到燃烧柔和效果,有效地降低燃烧噪声,减少排放,是世界内燃机行业公认的未来柴油机燃油系统的发展方向。在预喷机理分析的基础之上,提出了高压共轨燃油喷射系统预喷的控制策略,解决了预喷控制中有关喷射协调、预喷油量、喷射起始时刻、喷油器作用时间和预喷释放等问题。  相似文献   

14.
The demand for reduced pollutant emissions has motivated various technological advances in passenger car diesel engines. This paper presents a study comparing two fuel injection systems and analyzing their combustion noise and pollutant emissions. The abilities of different injection strategies to meet strict regulations were evaluated. The difficult task of maintaining a constant specific fuel consumption while trying to reduce pollutant emissions was the aim of this study. The engine being tested was a 0.287-liter single-cylinder engine equipped with a common-rail injection system. A solenoid and a piezoelectric injector were tested in the engine. The engine was operated under low load conditions using two injection events, high EGR rates, no swirl, three injection pressures and eight different dwell times. Four injector nozzles with approximately the same fuel injection rate were tested using the solenoid injection system (10 and 12 orifice configuration) and piezoelectric system (6 and 12 orifice design). The injection system had a significant influence on pollutant emissions and combustion noise. The piezoelectric injector presented the best characteristics for future studies since it allows for shorter injection durations and greater precision, which means smaller fuel mass deliveries with faster responses.  相似文献   

15.
Fuel injection during negative valve overlap period was used to realize diesel homogeneous charge compression ignition (HCCI) combustion. In order to control the combustion, CO2 in-cylinder injection was used to simulate external EGR. Effects of CO2 injection parameters (injection timing, quantity, pressure) on HCCI combustion and emission characteristics were investigated. Experimental results revealed that CO2 in-cylinder injection can control the start of combustion and effectively reduce NOx emission. Either advancing CO2 injection timing or increasing CO2 injection quantity can reduce peak cylinder pressure and mean gas temperature, delay the starts of low temperature reaction (LTR) and high temperature reaction (HTR), and lower pressure rise rate; NOx emission was reduced, while smoke, HC, and CO emissions increased. Since the combustion phase was improved, the indicated thermal efficiency was also improved. Injection pressure determines the amount of disturbance introduced into the cylinder. Generally, with the same injection quantity, higher injection pressure results in higher momentum flux and total momentum. Larger momentum flux and momentum has a stronger disturbance to air-fuel mixture, resulting in a more homogeneous mixture; therefore, larger injection pressure leads to lower NOx and smoke emissions.  相似文献   

16.
A low-cost solution based on fuel injection strategies was investigated to optimize the combustion process in a boosted port fuel injection spark ignition (PFI SI) engine. The goal was to reduce the fuel consumption and pollutant emissions while maintaining performance. The effect of fuel injection was analyzed for the closed and open valve conditions, and the multiple injection strategies (MIS) based on double and triple fuel injection in the open-valve condition. The tests were performed on an optical accessible single-cylinder PFI SI engine equipped with an external boost device. The engine was operated at full load and with a stoichiometric ratio equivalent to that of commercial gasolines. Optical techniques based on 2D-digital imaging were used to follow the flame propagation from the flame kernel to late combustion phase. In particular, the diffusion-controlled flames near the valves and cylinder walls, due to fuel deposition, were studied. In these conditions, the presence of soot was measured by two-color pyrometry, and correlated with engine parameters and exhaust emissions measured by conventional methods. The open valve fuel injection strategies demonstrated better combustion process efficiency than the closed ones. They provided very low soot levels in the combustion chamber and engine exhaust, and a reduction in specific fuel consumption. The multiple injection strategies proved to be the best solution in terms of performance, soot concentration, and fuel consumption.  相似文献   

17.
This study intends to predict the influence of injection pressure and injection timing on performance, emission and combustion characteristics of a diesel engine fuelled with waste cooking palm oil based biodiesel using the artificial neural network (ANN) model. To acquire data for training and testing in the proposed ANN, experiments were carried out in a single cylinder, four stroke direct injection diesel engine at a constant speed of 1500 rpm and at full load (100%) condition. From the experimental results, it was observed that waste cooking palm oil methyl ester provided better engine performance and improved emission and combustion characteristics at injection pressure of 280 bar and timing of 25.5° bTDC. An ANN model was developed using the data acquired from the experiments. Training of ANN was performed based on back propagation learning algorithm. Multilayer perceptron (MLP) network was used for non-linear mapping of the input and output parameters. Among the various networks tested the network with two hidden layers and 11 neurons gave better correlation coefficient for the prediction of engine performance, emission and combustion characteristics. The ANN model was validated with the test data which was not used for training and was found to be very well correlated.  相似文献   

18.
《JSAE Review》1999,20(1):31-39
In a direct injection gasoline engine, in order to achieve good stratified combustion, an extremely advanced control of air–fuel mixture is required. For this purpose, the method of diagnosing the quality of the state of mixture formation in combustion chambers becomes necessary. In this research, the state of air–fuel mixture in the combustion chamber of a TOYOTA D-4 was analyzed in space and time by visualization, A/F multi-point measurement and A/F high response measurement, and thus the effects that injection timing, swirl and fuel pressure exerted on mixture formation were elucidated.  相似文献   

19.
对1台车用高速高压共轨柴油机进行了不同负荷、不同转速以及不同喷射参数工况下的缸内压力测试,通过分析燃烧放热规律对气缸压力变化的影响,对燃烧放热规律与燃烧噪声的关系进行了研究。研究结果表明:燃烧噪声不仅与最高气缸压力和最大压力升高率有关,还与各自相位的间隔有关;负荷对发动机燃烧噪声的影响较大,转速对燃烧噪声的影响主要体现在频率范围变化;通过改变喷射参数可以改变柴油机的燃烧噪声水平。  相似文献   

20.
《JSAE Review》1999,20(3):407-411
Ignition and combustion characteristics of a two-stage injection diesel spray were experimentally investigated. A constant volume combustion chamber was filled with air which was controlled at 3.0 MPa and 743–923 K. In order to measure the ignition delay and the ignition position, a high speed video system was used. A 306 nm interference filter and an image intensifier system were attached to the camera for detecting the OH radical emission. The results show that the ignition delay of a two-stage injection spray becomes shorter compared with that of a single injection spray. The ignition positions of two-stage injection spray are observed nearer to the nozzle than that of single injection spray. Also, the temperature limit of complete combustion on a two-stage injection spray becomes lower than that of a single injection spray.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号