首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Objective testing of vehicle handling in winter conditions has not been implemented yet because of its low repeatability and its low signal-to-noise ratio. Enabling this testing, by identifying robust manoeuvres and metrics, was the aim of this study. This has been achieved by using both experimental data, gathered with steering-robot tests on ice, and simulation models of different complexities. Simple bicycle models with brush and MF-tyre models were built, both optimally parameterised against the experimental data. The brush model presented a better balance in complexity performance. This model was also implemented in a Kalman filter to reduce measurement noise; however, a simpler low-pass filter showed almost similar results at lower cost. A more advanced full vehicle model was built in VI-CarRealTime, based on kinematics and compliance data, damper measurements, and real tyre measurements in winter conditions. This model offered better results and was therefore chosen to optimise the initial manoeuvres through test design and simulations. A sensitivity analysis (ANOVA) of the experimental data allowed one to classify the robustness of the metrics. Finally, to validate the results, the proposed and the initial manoeuvres were tested back to back in a new winter campaign.  相似文献   

2.
Various active safety systems proposed for articulated heavy goods vehicles (HGVs) require an accurate estimate of vehicle sideslip angle. However in contrast to passenger cars, there has been minimal published research on sideslip estimation for articulated HGVs. State-of-the-art observers, which rely on linear vehicle models, perform poorly when manoeuvring near the limits of tyre adhesion. This paper investigates three nonlinear Kalman filters (KFs) for estimating the tractor sideslip angle of a tractor–semitrailer. These are compared to the current state-of-the-art, through computer simulations and vehicle test data. An unscented KF using a 5 degrees-of-freedom single-track vehicle model with linear adaptive tyres is found to substantially outperform the state-of-the-art linear KF across a range of test manoeuvres on different surfaces, both at constant speed and during emergency braking. Robustness of the observer to parameter uncertainty is also demonstrated.  相似文献   

3.
This paper demonstrates a method to estimate the vehicle states sideslip, yaw rate, and heading using GPS and yaw rate gyroscope measurements in a model-based estimator. The model-based estimator using GPS measurements provides accurate and observable estimates of sideslip, yaw rate, and heading even if the vehicle model is in neutral steer or if the gyro fails. This method also reduces estimation errors introduced by gyroscope errors such as the gyro bias and gyro scale factor. The GPS and Inertial Navigation System measurements are combined using a Kalman filter to generate estimates of the vehicle states. The residuals of the Kalman filter provide insight to determine if the estimator model is correct and therefore providing accurate state estimates. Additionally, a method to predict the estimation error due to errors in the estimator model is presented. The algorithms are tested in simulation with a correct and incorrect model as well as with sensor errors. Finally, the estimation scheme is tested with experimental data using a 2000 Chevrolet Blazer to further validate the algorithms.  相似文献   

4.
Collision warning/collision avoidance (CW/CA) systems target a major crash type and their development is a major thrust of the Intelligent Vehicle Initiative. They are a natural extension of adaptive cruise control systems already available on many car models. Many CW/CA algorithms have recently been proposed but the existing literature mainly focuses on algorithm development. Evaluations of these algorithms have been usually based on subjective ratings. The main contribution of this paper is the utilization of a naturalistic driving data set for the evaluation of CW/CA algorithms. We first collect manual driving data from the ICCFOT project, then process the data by Kalman smoothing, and finally identify 'threatening' and 'safe' data sets according to vehicle brake inputs and vehicle range behavior. Five CW/CA algorithms published in the literature are evaluated against the identified data sets. The performance of these algorithms is determined through a performance metric commonly used in signal detection and information retrieval under unbalanced data population.  相似文献   

5.
In this paper, as a continuation of part I of [N. Zhang, G.M. Dong, and H.P. Du, Investigation into untripped rollover of light vehicles in the modified fishhook and the sine manoeuvres, part I: vehicle modelling, roll and yaw instability, Veh. Syst. Dyn. 46 (2008), pp. 271–293], detailed parametric studies are conducted and compared between the fishhook and sine manoeuvres using the presented nine-degree-of-freedom vehicle model, in order to understand the rollover resistance capability of a light passenger vehicle with various parameters. First, effects of driving conditions are studied in the two manoeuvres. Secondly, effects of suspension characteristics are studied, in which the influence of suspension spring stiffness and shock absorber damping, anti-roll bar is discussed. Thirdly, effects of vehicle inertia properties, such as moment of inertia of vehicle sprung mass, sprung mass weight and location of centre of gravity, are investigated. Finally, effects of tyre characteristics are also investigated by altering the scaling factor λ Fz0. An in-depth understanding has been gained on the significant effects of key system parameters on the kinetic performance of vehicles under the fishhook and the sine manoeuvres. Parametric studies show that the combination of step input (fishhook) and frequency input gives a clear indication of the vehicle dynamic stability during cornering.  相似文献   

6.
Collision warning/collision avoidance (CW/CA) systems target a major crash type and their development is a major thrust of the Intelligent Vehicle Initiative. They are a natural extension of adaptive cruise control systems already available on many car models. Many CW/CA algorithms have recently been proposed but the existing literature mainly focuses on algorithm development. Evaluations of these algorithms have been usually based on subjective ratings. The main contribution of this paper is the utilization of a naturalistic driving data set for the evaluation of CW/CA algorithms. We first collect manual driving data from the ICCFOT project, then process the data by Kalman smoothing, and finally identify ‘threatening’ and ‘safe’ data sets according to vehicle brake inputs and vehicle range behavior. Five CW/CA algorithms published in the literature are evaluated against the identified data sets. The performance of these algorithms is determined through a performance metric commonly used in signal detection and information retrieval under unbalanced data population.  相似文献   

7.
There is currently a strongly growing interest in obtaining optimal control solutions for vehicle manoeuvres, both in order to understand optimal vehicle behaviour and, perhaps more importantly, to devise improved safety systems, either by direct deployment of the solutions or by including mimicked driving techniques of professional drivers. However, it is non-trivial to find the right combination of models, optimisation criteria, and optimisation tools to get useful results for the above purposes. Here, a platform for investigation of these aspects is developed based on a state-of-the-art optimisation tool together with adoption of existing vehicle chassis and tyre models. A minimum-time optimisation criterion is chosen for the purpose of gaining an insight into at-the-limit manoeuvres, with the overall aim of finding improved fundamental principles for future active safety systems. The proposed method to trajectory generation is evaluated in time-manoeuvres using vehicle models established in the literature. We determine the optimal control solutions for three manoeuvres using tyre and chassis models of different complexities. The results are extensively analysed and discussed. Our main conclusion is that the tyre model has a fundamental influence on the resulting control inputs. Also, for some combinations of chassis and tyre models, inherently different behaviour is obtained. However, certain variables important in vehicle safety-systems, such as the yaw moment and the body-slip angle, are similar for several of the considered model configurations in aggressive manoeuvring situations.  相似文献   

8.
In order to accurately predict vehicle dynamic responses when traversing high obstacles or large bumps, appropriate tyre models need to be developed and characterised. Tyre models used in vehicle ride and durability are usually characterised by experimental tests on the tyre. However, limitations in rig design and operating conditions restrict the range of test conditions under which the tyre can be tested, hence characterisation of the tyre behaviour during extreme manoeuvres may not be possible using physical tests. In this study, a combination of experimental tests and finite-element (FE) modelling is used in deriving Flexible Ring Tire (FTire) Models appropriate for different levels of tyre/road interaction severity. It is shown that FE modelling can be used to accurately characterise the behaviour of a tyre where limitations in experimental facilities prevent tyre characterisation using the required level of input severity in physical tests. Multi-body simulation is used to demonstrate that the FTire model derived using extended range of obstacles produces more accurate transient dynamic response when traversing low and high road obstacles.  相似文献   

9.
The advantages of being able to objectively specify desirable vehicle handling characteristics, which can be determined without recourse to closed-loop tests on a prototype vehicle, are widely recognised. This paper reviews the studies that have attempted to find a relationship between closed-loop task performance, and driver subjective opinion, and various steady-state and transient characteristics revealed in open-loop tests of the vehicle. It is found that the level of definition of these relationships is not sufficient to justify mandatory regulations for vehicle design. However, the basic requirements for steering control sensitivity, and the rapidity and stability of the fixed-control dynamic response of vehicles in normal manoeuvres, are beginning to emerge. Data are particularly lacking for the closed-loop effects of vehicle sideslipping characteristics, free-control responses and vehicle behaviour in limit manoeuvres.  相似文献   

10.
《JSAE Review》1999,20(4):505-510
The ride and handling qualities of conventional delivery trucks are wores compared to modern passenger cars. However this vehicles have the power to drive as fast as passenger cars. Vehicle comfort and driving safety are mostly influenced by vertical accelerations and vehicle movements caused by pitch and roll motions. In the paper “Vehicle Dynamics with Adaptive or Semi-Active Suspension Systems – Demands on Software and Hardware” Wallentowitz and Ridlich have shown at AVEC'94 in which way tyre stiffness, shock absorber characteristics, spring stiffness and unsprung mass have an influence on vehicle comfort and active safety. They achieved these results by the theoretical analysis of a quarter-vehicle-model. Their examinations are extended in this paper on the model of a complete delivery truck. By the use of the multibody-simulation tool SIMPACK the road performance of a delivery truck will be analysed. Therefore a complex model of the vehicle has been built up in SIMPACK. Several computer simulations have been carried out to analyse the vehicle comfort and handling characteristics in different standard driving manoeuvres.Furthermore, the potential of improvements is shown by simulating different driving manoeuvres with the complete vehicle model by varying some vehicle characteristics such as tyre stiffness, shock absorber characteristics, spring stiffness and unsprung mass.In addition to that, simulations with models of unconventional spring- and damper-systems have been carried out to demonstrate the potential of improvements by the use of these systems. Two different controller algorithms for a semiactive and an active suspension system have been used an will be compared in this paper.  相似文献   

11.
The accurate estimation of sideslip angle is necessary for many vehicle control systems. The detection of sliding and skidding is especially critical in emergency situations. In this paper, a sideslip angle estimation method is proposed that considers severe longitudinal velocity variation over the short period of time during which a vehicle may lose stability due to sliding or spinning. An extended Kalman filter (EKF) based on a kinematic model of a vehicle is used without initialization of the inertial measurement unit to estimate vehicle longitudinal velocity. A dynamic compensation method that compensates for the difference in the locations of the vehicle velocity sensor and the IMU in on-road vehicle tests is proposed. Evaluations with a CarSim™ 27-degree-of-freedom (DOF) model for various vehicle test scenarios and with on-road tests using a real vehicle show that the proposed sideslip angle estimation method can accurately predict sideslip angle, even when vehicle longitudinal velocity changes significantly.  相似文献   

12.
In this research, a hybrid dead reckoning error correction scheme is developed based on extended Kalman filter (EKF) and map matching (MM) to improve the positioning accuracy for vehicle self-localization. The developed method aims at obtaining accurate positions when the GPS signals are occasionally unavailable or weakened. First, the heading data collected from an odometer and an optical fiber gyroscope are integrated by an EKF to reduce the random errors in dead reckoning. Then a modified topological MM algorithm is developed to reduce the systematic errors in dead reckoning. In this work, both cross-track errors and along-track errors are considered to improve positioning accuracy of MM. The errors are finally corrected using the results achieved from both the dead reckoning and the MM when the driving distance of a vehicle exceeds a predefined length or the vehicle turns in an intersection. Experiments have been conducted to evaluate the developed method and the results show that the maximum error and average error of dead reckoning can be respectively reduced to 15.4?m and 5.2?m during the experiment with total distance of 43?km. This positioning accuracy is even better than the accuracy of the low-cost GPSs which are usually at the order of 15–20?m (95%). The developed method is effective to achieve the positions of the vehicle when the GPS signals are occasionally unavailable or weakened.  相似文献   

13.
The paper investigates the use of a direct virtual sensor (DVS) to replace a physical sensor in a vehicle stability control system. A yaw control system is considered and the proposed solution can be particularly useful when a fault of the yaw rate physical sensor occurs. A DVS is a stable linear filter derived directly from input–output data, collected in a preliminary experiment. In this work, it is shown that, by using data collected in a closed-loop fashion, better DVS accuracy can be obtained with a reduced number of measured variables. Moreover, the robust stability of the closed-loop system employing a DVS is studied. The effectiveness of the presented results is shown through numerical simulations of harsh manoeuvres, performed using a detailed model of a vehicle equipped with an active front steering device.  相似文献   

14.
The design of passive suspension systems using conventional springs and dampers is limited by the need to compromise between vehicle ride and handling functions. The Interconnected Hydragas Suspension fitted to the current Rover 100 series partially allays this compromise by reducing the vehicle pitch stiffness witfiout affecting the bounce and roll stiffnesses. However, the vehicle body is still subject to roll during cornering manoeuvres. This paper outlines the development and simulation of a sealed low bandwidth active roll control suspension based on the existing Interconnected Hydragas System. Following a brief explanation of the Hydragas suspension operating principle die paper outlines the design of a fluid displacer or 'shuttle'. This shuttle enables control over body roll during manoeuvres by displacing fluid from one side of the car to the other. Care is taken to ensure low power consumption whilst the sealed nature of the fluid based suspension units guarantee reliable operation without leakage. Using computer simulation, the system performance is predicted and compared with experimental measurements. It is shown that roll during manoeuvres can be reduced or eliminated using a minimum of hydraulic components with only moderate power consumption and cost.  相似文献   

15.
高艺红 《天津汽车》2012,(10):31-33
为保证整车具有更好更快的制动性能,将制动系统的管路布置由三通道改为四通道,在现有制动系统DBC7.4ABS模块的基础上附带PBA功能,增加制动辅助(BAS)装置。通过对相应的零部件进行设计变更,对整车制动系统重新进行标定,并针对整车的技术条件进行了常温和冬季性能试验,确保整车制动性能满足欧盟法规要求,并顺利通过了E-mark认证。此制动系统的开发设计无须额外增加传感器,不会增加太多的生产成本,也不会增加整车的质量及安装空间。  相似文献   

16.
In the pursuit of an objective rating on vehicle stability performance, it is always desirable to reduce disturbances and inconsistencies during experimental evaluations, especially the ones introduced by human drivers. This paper presents the development of a steering robot designed for closed-loop steering tasks during evasive manoeuvres. It describes the controller structure and discusses experimental results, in addition to simulation/vehicle model verifications and theoretical control analysis.  相似文献   

17.
‘Slip control’ braking has been shown to reduce the emergency stopping distance of an experimental heavy goods vehicle by up to 19%, compared to conventional electronic/anti-lock braking systems (EBS). However, little regard has been given to the impact of slip control braking on the vehicle’s directional dynamics. This paper uses validated computer models to show that slip control could severely degrade directional performance during emergency braking. A modified slip control strategy, ‘attenuated slip demand’ (ASD) control, is proposed in order to rectify this. Results from simulations of vehicle performance are presented for combined braking and cornering manoeuvres with EBS and slip control braking with and without ASD control. The ASD controller enables slip control braking to provide directional performance comparable with conventional EBS while maintaining a substantial stopping distance advantage. The controller is easily tuned to work across a wide range of different operating conditions.  相似文献   

18.
In modern railway Automatic Train Protection and Automatic Train Control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. Simplified two-dimensional models of railway vehicles have been usually used for Hardware in the Loop test rig testing of conventional odometry algorithms and of on-board safety relevant subsystems (like the Wheel Slide Protection braking system) in which the train speed is estimated from the measures of the wheel angular speed. Two-dimensional models are not suitable to develop solutions like the inertial type localisation algorithms (using 3D accelerometers and 3D gyroscopes) and the introduction of Global Positioning System (or similar) or the magnetometer. In order to test these algorithms correctly and increase odometry performances, a three-dimensional multibody model of a railway vehicle has been developed, using Matlab-Simulink?, including an efficient contact model which can simulate degraded adhesion conditions (the development and prototyping of odometry algorithms involve the simulation of realistic environmental conditions). In this paper, the authors show how a 3D railway vehicle model, able to simulate the complex interactions arising between different on-board subsystems, can be useful to evaluate the odometry algorithm and safety relevant to on-board subsystem performances.  相似文献   

19.
For the control of anti-lock brake system (ABS), a longitudinal four-wheel vehicle model with brake actuator is described and a sliding mode controller with pulse width modulation (PWM) method has been developed for passenger vehicles. In our research, we introduced actuator dynamics in the system equation and derived the equivalent control input theoretically. We propose using the PWM method to compensate for the discrete nature of actuator dynamics by duty control. Stability of the PWM controller for sliding mode control (SMC) was theoretically checked. The effectiveness of the proposed control algorithms was confirmed by vehicle tests on an In-door test bench that was specially constructed for the purpose concerned.  相似文献   

20.
Race car drivers can offer insights into vehicle control during extreme manoeuvres; however, little data from race teams is publicly available for analysis. The Revs Program at Stanford has built a collection of vehicle dynamics data acquired from vintage race cars during live racing events with the intent of making this database publicly available for future analysis. This paper discusses the data acquisition, post-processing, and storage methods used to generate the database. An analysis of available data quantifies the repeatability of professional race car driver performance by examining the statistical dispersion of their driven paths. Certain map features, such as sections with high path curvature, consistently corresponded to local minima in path dispersion, quantifying the qualitative concept that drivers anchor their racing lines at specific locations around the track. A case study explores how two professional drivers employ distinct driving styles to achieve similar lap times, supporting the idea that driving at the limits allows a family of solutions in terms of paths and speed that can be adapted based on specific spatial, temporal, or other constraints and objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号