共查询到16条相似文献,搜索用时 15 毫秒
1.
Yun BaiTaesung Hwang Seungmo KangYanfeng Ouyang 《Transportation Research Part B: Methodological》2011,45(1):162-175
This research focuses on planning biofuel refinery locations where the total system cost for refinery investment, feedstock and product transportation and public travel is minimized. Shipment routing of both feedstock and product in the biofuel supply chain and the resulting traffic congestion impact are incorporated into the model to decide optimal locations of biofuel refineries. A Lagrangian relaxation based heuristic algorithm is introduced to obtain near-optimum feasible solutions efficiently. To further improve optimality, a branch-and-bound framework (with linear programming relaxation and Lagrangian relaxation bounding procedures) is developed. Numerical experiments with several testing examples demonstrate that the proposed algorithms solve the problem effectively. An empirical Illinois case study and a series of sensitivity analyses are conducted to show the effects of highway congestion on refinery location design and total system costs. 相似文献
2.
Identification of vehicle sensor locations for link-based network traffic applications 总被引:1,自引:0,他引:1
Shou-Ren Hu Srinivas Peeta Chun-Hsiao Chu 《Transportation Research Part B: Methodological》2009,43(8-9):873-894
Information on link flows in a vehicular traffic network is critical for developing long-term planning and/or short-term operational management strategies. In the literature, most studies to develop such strategies typically assume the availability of measured link traffic information on all network links, either through manual survey or advanced traffic sensor technologies. In practical applications, the assumption of installed sensors on all links is generally unrealistic due to budgetary constraints. It motivates the need to estimate flows on all links of a traffic network based on the measurement of link flows on a subset of links with suitably equipped sensors. This study, addressed from a budgetary planning perspective, seeks to identify the smallest subset of links in a network on which to locate sensors that enables the accurate estimation of traffic flows on all links of the network under steady-state conditions. Here, steady-state implies that the path flows are static. A “basis link” method is proposed to determine the locations of vehicle sensors, by using the link-path incidence matrix to express the network structure and then identifying its “basis” in a matrix algebra context. The theoretical background and mathematical properties of the proposed method are elaborated. The approach is useful for deploying long-term planning and link-based applications in traffic networks. 相似文献
3.
Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability. 相似文献
4.
Establishment of industry facilities often induces heavy vehicle traffic that exacerbates congestion and pavement deterioration in the neighboring highway network. While planning facility locations and land use developments, it is important to take into account the routing of freight vehicles, the impact on public traffic, as well as the planning of pavement rehabilitation. This paper presents an integrated facility location model that simultaneously considers traffic routing under congestion and pavement rehabilitation under deterioration. The objective is to minimize the total cost due to facility investment, transportation cost including traffic delay, and pavement life-cycle costs. Building upon analytical results on optimal pavement rehabilitation, the problem is formulated into a bi-level mixed-integer non-linear program (MINLP), with facility location, freight shipment routing and pavement rehabilitation decisions in the upper level and traffic equilibrium in the lower level. This problem is then reformulated into an equivalent single-level MINLP based on Karush–Kuhn–Tucker (KKT) conditions and approximation by piece-wise linear functions. Numerical experiments on hypothetical and empirical network examples are conducted to show performance of the proposed algorithm and to draw managerial insights. 相似文献
5.
This paper first shows that LUCE (Gentile, 2012), a recent addition to the family of bush-based algorithms, is closely related to OBA (Bar-Gera, 2002). LUCE’s promise comes mainly from its use of the greedy method for solving the quadratic approximation of node-based subproblems, which determines the search direction. While the greedy algorithm accelerates the solution of the subproblems and reduces the cost of line search, it unexpectedly disrupts the overall convergence performance in our experiments, which consistently show that LUCE failed to converge beyond certain threshold of relative gap. Our analysis suggests that the root cause to this interesting behavior is the inaccurate quadratic approximation constructed on faulty information of second-order derivatives. Because the quadratic approximations themselves are inaccurate, the search directions generated from them are sub-optimal. Unlike OBA, however, LUCE does not have a mechanism to correct these search directions through line search, which explains why its convergence performance suffers the observed breakdowns. We also attempt to improve LUCE using the ideas that have been experimented for the improvement of OBA. While these improvements do work, their effects are not enough to counteract the inability to adjust sub-optimal search directions. Importantly, the fact that the search direction has to be corrected in line search to ensure smooth convergence attests to the limitation of origin-based flow aggregation shared by both OBA and LUCE. These findings offer guidelines for the design of high performance traffic assignment algorithms. 相似文献
6.
The problem of optimally locating fixed sensors on a traffic network infrastructure has been object of growing interest in the past few years. Sensor location decisions models differ from each other according to the type of sensors that are to be located and the objective that one would like to optimize. This paper surveys the existing contributions in the literature related to the problem of locating fixed sensors on the network to estimate travel times. The review consists of two parts: the first part reviews the methodological approaches for the optimal location of counting sensors on a freeway for travel time estimation; the second part focuses on the results related to the optimal location of Automatic Vehicle Identification (AVI) readers on the links of a network to get travel time information. 相似文献
7.
This paper investigates a traffic volume control scheme for a dynamic traffic network model which aims to ensure that traffic volumes on specified links do not exceed preferred levels. The problem is formulated as a dynamic user equilibrium problem with side constraints (DUE-SC) in which the side constraints represent the restrictions on the traffic volumes. Travelers choose their departure times and routes to minimize their generalized travel costs, which include early/late arrival penalties. An infinite-dimensional variational inequality (VI) is formulated to model the DUE-SC. Based on this VI formulation, we establish an existence result for the DUE-SC by showing that the VI admits at least one solution. To analyze the necessary condition for the DUE-SC, we restate the VI as an equivalent optimal control problem. The Lagrange multipliers associated with the side constraints as derived from the optimality condition of the DUE-SC provide the traffic volume control scheme. The control scheme can be interpreted as additional travel delays (either tolls or access delays) imposed upon drivers for using the controlled links. This additional delay term derived from the Lagrange multiplier is compared with its counterpart in a static user equilibrium assignment model. If the side constraint is chosen as the storage capacity of a link, the additional delay can be viewed as the effort needed to prevent the link from spillback. Under this circumstance, it is found that the flow is incompressible when the link traffic volume is equal to its storage capacity. An algorithm based on Euler’s discretization scheme and nonlinear programming is proposed to solve the DUE-SC. Numerical examples are presented to illustrate the mechanism of the proposed traffic volume control scheme. 相似文献
8.
Adam DanczykHenry X. Liu 《Transportation Research Part B: Methodological》2011,45(1):208-217
How to optimally allocate limited freeway sensor resources is of great interest to transportation engineers. In this paper, we focus on the optimal allocation of point sensors, such as loop detectors, to minimize performance measurement errors. Although it has been shown that the minimization problem can be intuitively formulated as a nonlinear program, the formulation is so complex that only heuristic approaches can be used to solve the problem. In this paper, we transform the nonlinear program into an equivalent mixed-integer linear model. The linearized model is shown to have a graphical interpretation and can be solved using resource constrained shortest path algorithms. A customized Branch-and-Bound technique is then proposed to solve the resource constrained shortest path problem. Numerical experiments along an urban freeway corridor demonstrate that this sensor location model is successful in allocating loop detectors to improve the accuracy of travel time estimation. 相似文献
9.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS. 相似文献
10.
The GSOM (Generic second order modelling) family of traffic flow models combines the LWR model with dynamics of driver-specific attributes and can be expressed as a system of conservation laws. The object of the paper is to show that a proper Lagrangian formulation of the GSOM model can be recast as a Hamilton–Jacobi equation, the solution of which can be expressed as the value function of an optimal control problem. This value function is interpreted as the position of vehicles, and the optimal trajectories of the optimal control formulation can be identified with the characteristics. Further the paper analyzes the initial and boundary conditions, proposes a generalization of the inf-morphism and the Lax–Hopf formulas to the GSOM model, and considers numerical aspects. 相似文献
11.
Traffic crashes occurring on freeways/expressways are considered to relate closely to previous traffic conditions, which are time-varying. Meanwhile, most studies use volume/occupancy/speed parameters to predict the likelihood of crashes, which are invalid for roads where the traffic conditions are estimated using speed data extracted from sampled floating cars or smart phones. Therefore, a dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data. Moreover, the traffic conditions near the crash site were identified as several state combinations according to the level of congestion and included in the DBN model. Based on 551 crashes and corresponding speed information collected on expressways in Shanghai, China, DBN models were built with time series speed condition data and different state combinations. A comparative analysis of the DBN model using flow detector data and a static Bayesian network model was also conducted. The results show that, with only speed condition data and nine traffic state combinations, the DBN model can achieve a crash prediction accuracy of 76.4% with a false alarm rate of 23.7%. In addition, the results of transferability testing imply that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy. 相似文献
12.
A multi-period multipath refueling location model is developed to expand public electric vehicle (EV) charging network to dynamically satisfy origin–destination (O–D) trips with the growth of EV market. The model captures the dynamics in the topological structure of network and determines the cost-effective station rollout scheme on both spatial and temporal dimensions. The multi-period location problem is formulated as a mixed integer linear program and solved by a heuristic based on genetic algorithm. The model and heuristic are justified using the benchmark Sioux Falls road network and implemented in a case study of South Carolina. The results indicate that the charging station rollout scheme is subject to a number of major factors, including geographic distributions of cities, vehicle range, and deviation choice, and is sensitive to the types of charging station sites. 相似文献
13.
A new convex optimization framework is developed for the route flow estimation problem from the fusion of vehicle count and cellular network data. The issue of highly underdetermined link flow based methods in transportation networks is investigated, then solved using the proposed concept of cellpaths for cellular network data. With this data-driven approach, our proposed approach is versatile: it is compatible with other data sources, and it is model agnostic and thus compatible with user equilibrium, system-optimum, Stackelberg concepts, and other models. Using a dimensionality reduction scheme, we design a projected gradient algorithm suitable for the proposed route flow estimation problem. The algorithm solves a block isotonic regression problem in the projection step in linear time. The accuracy, computational efficiency, and versatility of the proposed approach are validated on the I-210 corridor near Los Angeles, where we achieve 90% route flow accuracy with 1033 traffic sensors and 1000 cellular towers covering a large network of highways and arterials with more than 20,000 links. In contrast to long-term land use planning applications, we demonstrate the first system to our knowledge that can produce route-level flow estimates suitable for short time horizon prediction and control applications in traffic management. Our system is open source and available for validation and extension. 相似文献
14.
With a particular emphasis on the end-to-end travel time prediction problem, this paper proposes an information-theoretic sensor location model that aims to minimize total travel time uncertainties from a set of point, point-to-point and probe sensors in a traffic network. Based on a Kalman filtering structure, the proposed measurement and uncertainty quantification models explicitly take into account several important sources of errors in the travel time estimation/prediction process, such as the uncertainty associated with prior travel time estimates, measurement errors and sampling errors. By considering only critical paths and limited time intervals, this paper selects a path travel time uncertainty criterion to construct a joint sensor location and travel time estimation/prediction framework with a unified modeling of both recurring and non-recurring traffic conditions. An analytical determinant maximization model and heuristic beam-search algorithm are used to find an effective lower bound and solve the combinatorial sensor selection problem. A number of illustrative examples and one case study are used to demonstrate the effectiveness of the proposed methodology. 相似文献
15.
ABSTRACTIn recent years, there has been considerable research interest in short-term traffic flow forecasting. However, forecasting models offering a high accuracy at a fine temporal resolution (e.g. 1 or 5?min) and lane level are still rare. In this study, a combination of genetic algorithm, neural network and locally weighted regression is used to achieve optimal prediction under various input and traffic settings. The genetically optimized artificial neural network (GA-ANN) and locally weighted regression (GA-LWR) models are developed and tested, with the former forecasting traffic flow every 5-min within a 30-min period and the latter for forecasting traffic flow of a particular 5-min period of each for four lanes of an urban arterial road in Beijing, China. In particular, for morning peak and off-peak traffic flow prediction, the GA-ANN 5-min traffic flow model results in average errors of 3–5% and most 95th percentile errors of 7–14% for each of the four lanes; for the peak and off-peak time traffic flow predictions, the GA-LWR 5-min traffic flow model results in average errors of 2–4% and most 95th percentile errors are lower than 10% for each of the four lanes. When compared to previous models that usually offer average errors greater than 6–15%, such empirical findings should be of interest to and instrumental for transportation authorities to incorporate in their city- or state-wide Advanced Traveller Information Systems (ATIS). 相似文献
16.
ABSTRACTIn order to improve traffic safety and protect pedestrians, an improved and efficient pedestrian detection method for auto driver assistance systems is proposed. Firstly, an improved Accumulate Binary Haar (ABH) feature extraction algorithm is proposed. In this novel feature, Haar features keep only the ordinal relationship named by binary Haar features. Then, the feature brings in the idea of a Local Binary Pattern (LBP), assembling several neighboring binary Haar features to improve discriminating power and reduce the effect of illumination. Next, a pedestrian classification method based on an improved deep belief network (DBN) classification algorithm is proposed. An improved method of input is constructed using a Restricted Bolzmann Machine (RBM) with T distribution function visible layer nodes, which can convert information on pedestrian features to a Bernoulli distribution, and the Bernoulli distribution can then be used for recognition. In addition, a middle layer of the RBM structure is created, which achieves data transfer between the hidden layer structure and keeps the key information. Finally, the cost-sensitive Support Vector Machine (SVM) classifier is used for the output of the classifier, which could address the class-imbalance problem. Extensive experiments show that the improved DBN pedestrian detection method is better than other shallow classic algorithms, and the proposed method is effective and sufficiently feasible for pedestrian detection in complex urban environments. 相似文献