首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
桥梁转体施工是解决新建高速公路与既有铁路"公铁交叉"问题的主要技术措施之一,该技术可以最大限度地减少桥梁施工过程对既有铁路运营干扰,因而得到工程界的青睐,但是桥梁转体施工过程中的风险不容小觑。合理的转体系统组成以及转体施工关键技术参数是确保桥梁转体施工成功的关键。本文以武易高速马官营特大桥上跨成昆铁路施工为例,结合施工现场与转体跨线桥施工的特点,对转体跨线桥桥梁施工的转体系统组成以及转体牵引力、设备配置进行探究。工程实践表明:由于采用技术措施得当,转体跨线桥工程如期如质完成,并为类似工程提供了参考。  相似文献   

2.
青连铁路跨胶州湾高速公路特大桥跨越既有胶黄铁路,采用(48+80+48)m连续梁,如采用传统的悬臂挂篮现浇法施工,施工周期长,为减小连续梁施工对既有胶黄铁路运营的影响,采用先悬浇后转体到位合龙的施工方法可极大降低施工安全风险,具有明显优势。结合该桥转体工点施工设计,对转体系统构造设计和采用的转体施工方法进行了介绍。该桥采用该方法顺利转体就位,取得了良好的预期效果,对类似工程具有一定的借鉴意义。  相似文献   

3.
平法转体桥可有效地减少大跨度连续梁上跨既有铁路施工对铁路运行安全的影响。现以长治至襄垣连接线上跨安居铁路平法转体桥为例,介绍转体桥设计的相关内容及注意事项。其内容对类似工程的设计实施具有借鉴和指导意义。  相似文献   

4.
天津集疏港公路跨津山铁路转体桥施工监测   总被引:1,自引:0,他引:1  
该文介绍了天津集疏港公路跨津山铁路转体桥施工监测的测点布设方案和监测结果。监测内容包括转体T构的控制截面的应力与挠度、主桥墩的应力与沉降、超长预应力筋摩阻系数,以及铁路路基的沉降等。该桥具有在既有铁路沿线施工自平衡T型刚构,在软土地基实现大吨位双幅同步水平转体等特点,可供类似工程参考。  相似文献   

5.
为减少对既有线路的影响,桥梁转体施工被广泛应用于铁路跨线等桥梁工程。文中以襄阳东西轴线上跨铁路不对称独塔斜拉桥为依托工程,采用ANSYS对转体斜拉桥永临结合构造建立精细化三维实体有限元模型,研究不同顶升吨位下永临结合构造的受力性能,得到了一套能够应用于转体施工斜拉桥的安全可靠的临时固结及永久固结的方案。  相似文献   

6.
连续梁转体施工避免了施工过程对既有铁路的运营干扰,减小了既有铁路线安全运营风险。针对工程施工难点,介绍了转体系统组成以及转体施工关键技术。并通过有效的施工监控以及准确的不平衡承重试验,使梁体在转体过程中始终保持平衡,保证了转体过程安全顺利,同时也确保了转体到位后主梁的合龙精度。  相似文献   

7.
武汉轨道交通7号线北延线工程上跨铁路桥需跨越多股铁路,受天河机场限高等因素影响,主桥设计为(86+2×156+86)m预应力连续梁桥。设计中通过增加梁高、调整预应力钢束布置减少梁体残余徐变变形,采用二次张拉竖向钢绞线预应力体系改善主梁腹板抗裂性能。为减小施工对既有铁路的干扰,采用转体施工方案,转体吨位达15 000 t。邻近铁路的基坑采用隔离桩支护,基坑开挖和桥梁施工各阶段既有铁路路基附加沉降均满足规范要求。  相似文献   

8.
随着城市建设的不断推进,互通桥梁修建日益增多。城市互通桥梁跨既有公路及铁路时通常要求在施工过程中需保证既有公路及铁路的正常运营。为解决该类桥梁在保证既有公路及铁路运营的安全条件下快速施工这一施工重点、难点问题,结合某改造工程跨铁路立交桥256 m变截面预应力混凝土连续箱梁转体施工,介绍跨线城市互通桥梁快速施工,施工结果表明该方法是成功的,可供类似城市跨线桥梁工程设计和施工参考。  相似文献   

9.
正山东菏泽丹阳路立交桥转体工程近日成功转体。当日,在两台350 t连续式千斤顶的牵引下,自重达2.48万t的立交桥东侧主桥逆时针转动81.67°,与引桥实现精准对接。这是目前世界转体重量最大的斜拉桥。丹阳路立交桥全长2 031 m,跨越京九、新兖铁路及菏泽货场。为了减少施工对既有铁路线的干扰,确保铁路运行安全,施工部门采取"先建后转"工艺,先沿铁路平行方向建设桥体,再将建好桥体沿逆时针  相似文献   

10.
对于铁路新建、既有线施工问题,既要保证特定条件下,自身施工安全问题,更重要的是不得影响行车安全和对既有线路设施造成损毁。桥梁转体施工已经越来越被认可和应用,尤其是跨越既有铁路线的立交桥,使用转体施工工艺可使施工对行车影响时间最短,安全隐患最小。  相似文献   

11.
转体施工的宽桥面钢主梁斜拉桥通常适用于道路以小角度跨越既有铁路等大型控制点。斜拉桥索塔结构形式对桥梁造价、转体重量、施工便捷性和美观性等方面有较大的影响。以某独塔斜拉桥为工程背景,计算和比较了4种索塔结构形式,最终选用合适的花瓶形索塔(分离式下塔柱)形式。  相似文献   

12.
郑州中心区铁路跨线桥跨越京广、陇海客运线共7条股道的120 m梁段采用转体法施工,转体总重量为171 000 kN,从转体工程概况、转体体系施工、转体施工准备及转体施工过程等方面对该桥转体施工技术要点进行了介绍.  相似文献   

13.
龙岩大桥为(190+150)m不对称孔跨钢箱梁独塔斜拉桥;主梁为全宽36.3m的扁平流线型钢箱梁,桥塔为宝石形混凝土结构。采用半飘浮体系,桥塔与主梁间纵向约束采用水平拉索和阻尼器相结合形式,斜拉索和塔梁间纵向拉索均采用抗拉标准强度1 670 MPa镀锌平行钢丝拉索。平面转体施工实现跨越既有铁路,转体球铰设置在承台顶面,转体主梁悬臂长173.75m,转体主梁总长323.45m,最大转体总重量为25 510t,转体主梁通过"多点步履式顶推技术"顶推就位。该桥采用的桥式结构和施工方案最大程度避免了桥梁施工对铁路和城市道路的行车影响。  相似文献   

14.
转体施工方法具有安全可靠、费用低、工期短、适用范围广等特点,常用于跨既有线路或跨越大河及山谷等地段的桥梁施工。文中以郑州市一座跨铁路斜拉桥为例,介绍了转体结构中转盘、球铰等主要构造设计要点,以及转体施工实施方案。  相似文献   

15.
和平路高架桥上跨既有石太铁路,桥址处铁路建筑较多,为减小施工对铁路运营的影响,采用转体施工方法。综合国内外相关规范对高腹板的结构、强度、刚度及纵肋位置进行验算,对横向加劲肋进行结构、间距及刚度验算。在支座位置处设置阻尼器。通过设置临时索塔,使主梁应力、端支座压力、成桥线形等指标得到很好控制。以期为其他类似工程提供参考与借鉴。  相似文献   

16.
《公路》2021,(4)
转体铰是转体施工中的核心部件,目前使用最多的转体铰是平铰和球铰,选择和设计合理的转体铰对保证工程质量和节省工程成本具有重大的意义[1]。某跨铁路转体斜拉桥,其转体重量约为8万吨,远远超过了已有的工程实践。文章以该大桥项目为工程背景,主要通过平铰和球铰物理特性的比较,以及预应力混凝土和钢材两种转体铰材料的比选,选择合理的转体铰类型和材料进行设计分析,并通过有限元分析软件Midas Civil来分析转体铰的强度和刚度是否满足承载要求,为本工程超大吨位转体施工选择和设计合理的转体铰提供依据。  相似文献   

17.
铁路营业线是国家的经济命脉,既有铁路的营业线(邻近营业线)施工不得对铁路行车、既有设备造成影响。在下穿既有铁路施工过程中,对既有铁路进行监测是保障铁路运营的必要措施。如何在施工过程中对既有铁路进行保护性监测,确保及时发现问题并进行预警以保障铁路运营安全是一个值得研究的课题。以一个下穿铁路立交工程为例,通过新建工程概况、基坑工程概况、监测项目确定、监测点埋设、监测预报警机制、监测频率、监测结果等几方面,对施工过程中既有铁路的保护性监测进行了分析和总结,对今后类似项目有一定的参考价值。  相似文献   

18.
《世界桥梁》2021,49(3)
杨泗港快速通道青菱段跨铁路斜拉桥为半飘浮体系双塔钢箱梁斜拉桥,桥面宽44 m,跨越既有铁路采用转体法施工,转体长248 m,转体重达18 500 t。转体前进行不平衡称配重,确定平衡状态参数,确保主桥转体过程中的稳定性。施工过程中,控制钢箱梁拼装线形精度,使其转体后满足成桥目标状态;结合有限元分析,对主梁和桥塔最不利控制截面的内力及斜拉索索力进行控制,及时修正实际施工状态,保证成桥线形、结构内力和斜拉索索力满足设计要求。结果表明:成桥后主梁高程与设计值吻合良好;主梁应力为-22.6~-6.2 MPa;桥塔应力为-6.6~-3.9 MPa;斜拉索索力偏差小于10%;成桥线形和结构内力均满足设计要求。  相似文献   

19.
吉林四平市东丰路上跨铁路立交桥为(169+90)m非对称独塔单索面混合梁斜拉桥,该桥跨越15条既有铁路线,11号墩主跨侧钢梁(长145m)和边跨侧混凝土梁(长78m)采用平面转体法施工。施工时,先进行转体系统施工,转体系统施工后平行于铁路线方向采用支架拼装(浇筑)梁体;对转体结构进行顺桥向和横桥向称重;根据称重结果在主跨侧距离11号墩26~140m范围内进行压重(压重荷载为48.8kN/m);结构配重后进行转体施工,经试转、正式转体和精调对位后完成转体施工。  相似文献   

20.
桥梁转体施工是指将桥跨结构在非设计轴线位置制作成形,待其具有相应承载能力后,借助牵引力转体就位的一种施工方法。贵溪市余信贵大道上跨皖赣线、贵溪疏解线主桥采用双幅同步转体2×70m预应力砼T型刚构,该工法是对既有铁路运营影响最小的方案,每幅转体重量达14500t。本文介绍该桥的桥型构思及总体布置,转体施工宽幅T型刚构桥主体结构、结构分析要点及转动体系的设计特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号