首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A numerical method to simulate vertical dynamic interaction between a rolling train and a railway track has been used to investigate the influence of stochastic properties of the track structure. A perturbation technique has been used to investigate the influence of the scatter in selected track properties. The train-track interaction problem has been numerically solved by use of an extended state-space vector approach in conjunction with a complex modal superposition for the whole track structure. All numerical simulations have been carried out in the time-domain with a moving mass model. Properties such as rail pad stiffness, ballast stiffness, dynamic ballast-subgrade mass and sleeper spacing have been studied. To obtain sufficient statistical information from track structures, full-scale measurements in the field and laboratory measurements have been carried out. The influence of scatter in the track properties on the maximum contact force between the rail and the wheel, the maximum magnitude of the vertical wheelset acceleration, and the maximum sleeper displacement have been studied. Mean values and standard deviations of these quantities have been calculated. The effects of the variation of the investigated track properties are discussed.  相似文献   

2.
A combined finite-element boundary-element method is presented in detail to calculate the dynamic interaction of the railway track and the underlying soil. A number of results are shown for ballasted and slab track, demonstrating the influence of the stiffness of the soil and the rail pads on the vertical compliance of the track. The compliance of the track is combined with a simple model of the vehicle giving the transfer function of vehicle–track interaction. An experimental verification of the theoretical results is achieved by harmonic and impulse excitation with and without static (train-) load and by combined measurements of train–track–soil interaction. A clear vehicle–track resonance is found for the slab track with elastic rail pads and for higher frequencies at highspeed traffic, the dynamic axle loads due to sleeper passage are reduced.  相似文献   

3.
A combined finite-element boundary-element method is presented in detail to calculate the dynamic interaction of the railway track and the underlying soil. A number of results are shown for ballasted and slab track, demonstrating the influence of the stiffness of the soil and the rail pads on the vertical compliance of the track. The compliance of the track is combined with a simple model of the vehicle giving the transfer function of vehicle-track interaction. An experimental verification of the theoretical results is achieved by harmonic and impulse excitation with and without static (train-) load and by combined measurements of train-track-soil interaction. A clear vehicle-track resonance is found for the slab track with elastic rail pads and for higher frequencies at highspeed traffic, the dynamic axle loads due to sleeper passage are reduced.  相似文献   

4.
A model for simulation of dynamic interaction between a railway vehicle and a turnout (switch and crossing, S&C) is validated versus field measurements. In particular, the implementation and accuracy of viscously damped track models with different complexities are assessed. The validation data come from full-scale field measurements of dynamic track stiffness and wheel–rail contact forces in a demonstrator turnout that was installed as part of the INNOTRACK project with funding from the European Union Sixth Framework Programme. Vertical track stiffness at nominal wheel loads, in the frequency range up to 20?Hz, was measured using a rolling stiffness measurement vehicle (RSMV). Vertical and lateral wheel–rail contact forces were measured by an instrumented wheel set mounted in a freight car featuring Y25 bogies. The measurements were performed for traffic in both the through and diverging routes, and in the facing and trailing moves. The full set of test runs was repeated with different types of rail pad to investigate the influence of rail pad stiffness on track stiffness and contact forces. It is concluded that impact loads on the crossing can be reduced by using more resilient rail pads. To allow for vehicle dynamics simulations at low computational cost, the track models are discretised space-variant mass–spring–damper models that are moving with each wheel set of the vehicle model. Acceptable agreement between simulated and measured vertical contact forces at the crossing can be obtained when the standard GENSYS track model is extended with one ballast/subgrade mass under each rail. This model can be tuned to capture the large phase delay in dynamic track stiffness at low frequencies, as measured by the RSMV, while remaining sufficiently resilient at higher frequencies.  相似文献   

5.
Because thermal expansions are constrained within continuous welded rail track, the track can buckle, and does so mainly in the horizontal plane. In this paper, a parametric finite element model of railway track is presented, and its sensitivity to the variations of the main parameters that characterise the scenario has been investigated and discussed. Comparison with existing literature shows good agreement. It is found that curved tracks suffer from thermal buckling more than tangent tracks do. To simulate a track misalignment defect, a new methodology has been utilised that does not introduce, as is usual, geometrical discontinuities near the same defect, because it takes into account – in a natural way – the bending stiffness of the whole railway track in the horizontal plane. To contribute to a better understanding of the safe utilisation of raw experimental data obtained from in situ tests, a deep analysis of the effects on the thermal track buckling response produced by each parameter characterising the sleeper–ballast lateral resistance curve is presented and discussed. It is found that for current ballasted railway tracks, the minimum buckling temperature depends only on the limit lateral resistance, whereas a high value of the initial stiffness can lead to overestimation of the maximum buckling temperature, also taking into account the ‘natural’ decrease in the maximum buckling temperature due to an increase in the railway-traffic-induced defect amplitude.  相似文献   

6.
This research reviews principles behind the dynamic response of rail supports, and introduces a method of analysis to find the maximum response in a realistic setting. Assuming a time-dependent, moving mass with massive wheels is essential, because the ratio of the moving mass to the rail mass is significant. However, the dynamic response of the track is not affected by dynamic properties of the train other than its unsprung mass, because the natural frequencies of the train suspension and track are significantly different. A numerical method is developed to model the dynamic response based on these principles, and applied to the Korean urban transit. The dynamic response includes multiple peaks with a large amplitude range, creating noise while the wheel passes the support. The dynamic impact factor (DIF) for the rail support depends mainly on the stiffness and damping of the rail support. The DIF for the rail moment is below the code value, whether this value is based on numerical analysis or on-site measurements. However, our numerical analysis results in a DIF for support settlement that is greater than the code value, if the damping is less than 3%.  相似文献   

7.
A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models.  相似文献   

8.
A numerical method to simulate vertical dynamic interaction between a moving train and a railway track was extended to account for stochastic properties in the track structure. The numerical simulations are carried out in the time-domain with a moving mass model. Full-scale measurements in the field and laboratory experiments were carried out to obtain data for the stochastic track model. The values of the stochastic variables are thus chosen to correspond to real tracks. To investigate the influence of the randomness of selected stochastic parameters in the track structure, the Latin Hypercube sampling method with correlation control was used to generate stochastic realisations.  相似文献   

9.
A numerical method to simulate vertical dynamic interaction between a moving train and a railway track was extended to account for stochastic properties in the track structure. The numerical simulations are carried out in the time-domain with a moving mass model. Full-scale measurements in the field and laboratory experiments were carried out to obtain data for the stochastic track model. The values of the stochastic variables are thus chosen to correspond to real tracks. To investigate the influence of the randomness of selected stochastic parameters in the track structure, the Latin Hypercube sampling method with correlation control was used to generate stochastic realisations.  相似文献   

10.
A new method is proposed to obtain the dynamic responses of the vehicle–track coupling system under the conditions of rail thermal stress changes in high-speed railways. Exact models are established with different rail longitudinal forces, in which multibody dynamic models are used for vehicles and the direct stiffness method for structures. In order to provide a general, simple and flexible formulation to express longitudinal stress distribution, the accurate model of long slab track consists of many small units with parameters which can be initialised separately. The exact analytical equation of track frequency and modal function was obtained by the transition matrix method, which can be used in calculating the dynamic response of wheel–rail coupling model. The proposed model is verified through comparisons with other classical solutions. Under the influence of train velocities and track irregularities, the specific vibration performances that frequency shifted and amplitude peak enhanced with thermal force are demonstrated through examples. The results show that the response analyses of vehicle and track have great application potentiality for fast estimation of the rail longitudinal stress.  相似文献   

11.
The variation of the rail support stiffness is an inherent issue of railway tracks. There is still no consensus on the influence of the rail support stiffness variation on the dynamic response of the vehicle–track system. One view indicates that changes of the support stiffness do not have considerable influence on the vehicle dynamic response. The main influence factor is the rail deflection. However, the opposite view presents that the influence of the support stiffness on the system dynamic response is obvious. Reasons that lead to the dispute of previous studies are the neglect of the influence of the excitation frequencies and a lack of understanding of stiffness sensitive zones. In this study a vehicle–track coupling model with equivalent overall support stiffness is employed to investigate the response of the vehicle to changes of the track stiffness and excitation frequencies. Results show that for each of frequencies (1–40?Hz) the dynamic response of the vehicle is only sensitive to a certain range of the support stiffness. A stiffness sensitive zone for each excitation frequency can be observed. In order to further study the influence of the subgrade on the vehicle system dynamic response a vehicle–track-subgrade model is utilised. The subgrade stiffness belonging to the stiffness sensitive zone has a significant influence on vehicle vibrations. For overall support stiffness of the rail higher than 20?kN/mm, the stiffness sensitive zones of low excitation frequencies can be avoided.  相似文献   

12.
A new method is proposed for the solution of the vertical vehicle–track interaction including a separation between wheel and rail. The vehicle is modelled as a multi-body system using rigid bodies, and the track is treated as a three-layer beam model in which the rail is considered as an Euler-Bernoulli beam and both the sleepers and the ballast are represented by lumped masses. A linear complementarity formulation is directly established using a combination of the wheel–rail normal contact condition and the generalised-α method. This linear complementarity problem is solved using the Lemke algorithm, and the wheel–rail contact force can be obtained. Then the dynamic responses of the vehicle and the track are solved without iteration based on the generalised-α method. The same equations of motion for the vehicle and track are adopted at the different wheel–rail contact situations. This method can remove some restrictions, that is, time-dependent mass, damping and stiffness matrices of the coupled system, multiple equations of motion for the different contact situations and the effect of the contact stiffness. Numerical results demonstrate that the proposed method is effective for simulating the vehicle–track interaction including a separation between wheel and rail.  相似文献   

13.
针对隧道内合成轨枕无砟轨道结构形式,应用有限元分析Ansys软件,建立钢轨-扣件-合成轨枕-橡胶层-道床板-弹性基础的有限元分析模型,分析不同合成轨枕下橡胶层刚度、合成轨枕参数对合成轨枕无砟轨道结构的影响,为大瑞线无砟轨道结构的设计和施工提供依据。  相似文献   

14.
The vertical dynamic interaction between a railway vehicle and a slab track is simulated in the time domain using an extended state-space vector approach in combination with a complex-valued modal superposition technique for the linear, time-invariant and two-dimensional track model. Wheel–rail contact forces, bending moments in the concrete panel and load distributions on the supporting foundation are evaluated. Two generic slab track models including one or two layers of concrete slabs are presented. The upper layer containing the discrete slab panels is described by decoupled beams of finite length, while the lower layer is a continuous beam. Both the rail and concrete layers are modelled using Rayleigh–Timoshenko beam theory. Rail receptances for the two slab track models are compared with the receptance of a traditional ballasted track. The described procedure is demonstrated by two application examples involving: (i) the periodic response due to the rail seat passing frequency as influenced by the vehicle speed and a foundation stiffness gradient and (ii) the transient response due to a local rail irregularity (dipped welded joint).  相似文献   

15.
根据城市轻轨钢桥上二期恒载不能太大的特点,文中选取梯子形枕的无砟轨道结构进行应用研究。对梯子形枕作了简要介绍并就梯子形轨道的结构、材质、尺寸、曲线地段几何线形实现方案及L形支座施工方案进行了初步设计。  相似文献   

16.
A hybrid Spectral Element Method (SEM)–Symplectic Method(SM) method for high-efficiency computation of the high-frequency random vibrations of a high-speed vehicle–track system with the frequency-dependent dynamic properties of rail pads is presented. First, the Williams-Landel-Ferry (WLF) formula and Fractional Derivative Zener (FDZ) model were, respectively, applied for prediction and representation of the frequency-dependent dynamic properties of Vossloh 300 rail pads frequently used in China's high-speed railway. Then, the proposed hybrid SEM–SM method was used to investigate the influence of the frequency-dependent dynamic performance of Vossloh 300 rail pads on the high-frequency random vibrations of high-speed vehicle–track systems at various train speeds or different levels of rail surface roughness. The experimental results indicate that the storage stiffness and loss factors of Vossloh 300 rail pad increase with the decrease in dynamic loads or the increase in preloads within 0.1–10,000?Hz at 20°C, and basically linearly increase with frequency in a logarithmic coordinate system. The results computed by the hybrid SEM–SM method demonstrate that the frequency-dependent viscous damping of Vossloh 300 rail pads, compared with its constant viscous damping and frequency-dependent stiffness, has a much more conspicuous influence on the medium-frequency (i.e. 20–63?Hz) random vibrations of car bodies and rail fasteners, and on the mid- (i.e. 20–63?Hz) and high-frequency (i.e. 630–1250?Hz) random vibrations of bogies, wheels and rails, especially with the increase in train speeds or the deterioration of rail surface roughness. The two sensitive frequency bands can also be validated by frequency response function (FRF) analysis of the proposed infinite rail–fastener model. The mid and high frequencies influenced by the frequency-dependent viscous damping of rail pads are exactly the dominant frequencies of ground vibration acceleration and wheel rolling noise caused by high-speed railways, respectively. Even though the existing time-domain (or frequency-domain) finite track models associated with the time-domain (or frequency-domain) fractional derivative viscoelastic (FDV) models of rail pads can also be used to reach the same conclusions, the hybrid SEM–SM method in which only one element is required to compute the high-order vibration modes of infinite rail is more appropriate for high-efficiency analysis of the high-frequency random vibrations of high-speed vehicle–track systems.  相似文献   

17.
A review is presented of dynamic modelling of railway track and of the interaction of vehicle and track at frequencies which are sufficiently high for the track's dynamic behaviour to be significant. Since noise is one of the most important consequences of wheel/rail interaction at high frequencies, the maximum frequency of interest is about 5kHz: the limit of human hearing. The topic is reviewed both historically and in particular with reference to the application of modelling to the solution of practical problems. Good models of the rail, the sleeper and the wheelset are now available for the whole frequency range of interest. However, it is at present impossible to predict either the dynamic behaviour of the railpad and ballast or their long term behaviour. This is regarded as the most promising area for future research.  相似文献   

18.
The sleeper-passing impact has always been considered negligible in normal conditions, while the experimental data obtained from a High-speed train in a cold weather expressed significant sleeper-passing impacts on the axle box, bogie frame and car body. Therefore, in this study, a vertical coupled vehicle/track dynamic model was developed to investigate the sleeper-passing impacts and its effects on the dynamic performance of the high-speed train. In the model, the dynamic model of vehicle is established with 10 degrees of freedom. The track model is formulated with two rails supported on the discrete supports through the finite element method. The contact forces between the wheel and rail are estimated using the non-linear Hertz contact theory. The parametric studies are conducted to analyse effects of both the vehicle speeds and the discrete support stiffness on the sleeper-passing impacts. The results show that the sleeper-passing impacts become extremely significant with the increased support stiffness of track, especially when the frequencies of sleeper-passing impacts approach to the resonance frequencies of wheel/track system. The damping of primary suspension can effectively lower the magnitude of impacts in the resonance speed ranges, but has little effect on other speed ranges. Finally, a more comprehensively coupled vehicle/track dynamic model integrating with a flexible wheel set is developed to discuss the sleeper-passing-induced flexible vibration of wheel set.  相似文献   

19.
The soft under baseplate pad of WJ-8 rail fastener frequently used in China’s high-speed railways was taken as the study subject, and a laboratory test was performed to measure its temperature and frequency-dependent dynamic performance at 0.3?Hz and at ?60°C to 20°C with intervals of 2.5°C. Its higher frequency-dependent results at different temperatures were then further predicted based on the time–temperature superposition (TTS) and Williams–Landel–Ferry (WLF) formula. The fractional derivative Kelvin–Voigt (FDKV) model was used to represent the temperature- and frequency-dependent dynamic properties of the tested rail pad. By means of the FDKV model for rail pads and vehicle–track coupled dynamic theory, high-speed vehicle–track coupled vibrations due to temperature- and frequency-dependent dynamic properties of rail pads was investigated. Finally, further combining with the measured frequency-dependent dynamic performance of vehicle’s rubber primary suspension, the high-speed vehicle–track coupled vibration responses were discussed. It is found that the storage stiffness and loss factor of the tested rail pad are sensitive to low temperatures or high frequencies. The proposed FDKV model for the frequency-dependent storage stiffness and loss factors of the tested rail pad can basically meet the fitting precision, especially at ordinary temperatures. The numerical simulation results indicate that the vertical vibration levels of high-speed vehicle–track coupled systems calculated with the FDKV model for rail pads in time domain are higher than those calculated with the ordinary Kelvin–Voigt (KV) model for rail pads. Additionally, the temperature- and frequency-dependent dynamic properties of the tested rail pads would alter the vertical vibration acceleration levels (VALs) of the car body and bogie in 1/3 octave frequencies above 31.5?Hz, especially enlarge the vertical VALs of the wheel set and rail in 1/3 octave frequencies of 31.5–100?Hz and above 315?Hz, which are the dominant frequencies of ground vibration acceleration and rolling noise (or bridge noise) caused by high-speed railways respectively. Since the fractional derivative value of the adopted rubber primary suspension, unlike the tested rail pad, is very close to 1, its frequency-dependent dynamic performance has little effect on high-speed vehicle–track coupled vibration responses.  相似文献   

20.
Abstract

A review is presented of dynamic modelling of railway track and of the interaction of vehicle and track at frequencies which are sufficiently high for the track's dynamic behaviour to be significant. Since noise is one of the most important consequences of wheel/rail interaction at high frequencies, the maximum frequency of interest is about 5kHz: the limit of human hearing. The topic is reviewed both historically and in particular with reference to the application of modelling to the solution of practical problems. Good models of the rail, the sleeper and the wheelset are now available for the whole frequency range of interest. However, it is at present impossible to predict either the dynamic behaviour of the railpad and ballast or their long term behaviour. This is regarded as the most promising area for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号