首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在高地应力条件下具有层理构造的软岩中开挖隧道后,软弱围岩会发生显著的蠕变变形,直接影响隧道围岩的稳定性及支护结构的长期服役性能。本文采用有限元方法分析了兰渝铁路木寨岭隧道深埋软岩段双层和三层衬砌支护的效果。结果表明:在初期支护和二次衬砌之间增设轻质混凝土缓冲层有利于隧道围岩应力和变形的调整,可有效降低支护结构受力,从而充分发挥二层衬砌与锚杆的长期支护作用,更适用于高地应力条件下长期流变特征明显的软岩段隧道支护。  相似文献   

2.
为解决大埋深软岩盾构隧道衬砌结构的稳定性问题,依托广佛环线广州南站至白云机场段工程段盾构隧道工程,采用YSJ-01-00岩石三轴压缩流变试验机对泥质砂岩试样进行了室内蠕变试验,确定了数值模拟中Cvisc模型描述隧道泥质砂岩的蠕变特性的适用性;采用数值模拟对围岩蠕变作用下大埋深软岩盾构隧道力学特性展开了探究,结果表明:蠕变过程分为逐渐衰减和稳定蠕变两个阶段,围岩蠕变会造成内力值、弯矩以及应力值增加,从而使盾构隧道管片结构变形更加严重;当洞径不同时,其产生的围岩蠕变过程中,弯矩值、轴力值、变形值、应力值的变化趋势基本相同;如果洞径持续增大,其周边的岩石产生的压力更加明显,尤其集中体现在衬砌结构(管片)上,衬砌变形程度也更大;管片衬砌外侧接触压力与洞径成正比,同时拱腰处的接触压力所受到的影响相对较大。研究结果可为大埋深软岩盾构隧道的设计和施工提供指导。  相似文献   

3.
以广佛环线东环隧道工程为背景,从盾构隧道动态施工全过程出发,参考考虑开挖面空间效应的二阶段分析方法,拓展盾构隧道施工全过程的两阶段分析方法,以此分别建立盾构隧道施工第一阶段和第二阶段分析模型,研究围岩蠕变过程中围岩应力释放率、填充层厚度、填充层弹性模量对大埋深软岩盾构隧道围岩和支护结构相互作用规律的影响。结果表明:(1)施工过程中可从两方面控制围岩压力,分别为第一阶段中围岩的应力(位移)释放率及第二阶段中管片和填充层的联合支护效果;(2)第一阶段,超挖量、盾壳长度及填充层滞后距离越大,围岩传递到管片衬砌上的荷载越小;(3)壁后填充层在管片衬砌与其的联合支护体系中能起到缓冲作用,使围岩传递到管片衬砌上的荷载更均匀;(4)壁后填充层的弹性模量存在临界值,其值在50~200 MPa范围内,当壁后填充层的弹性模量远大于此临界值时,能分担较多围岩压力,当其弹性模量小于临界值时,围岩能释放一定的围岩应力,以此减小管片衬砌所受围岩压力;(5)第一阶段应力释放率对管片衬砌变形和内力的影响程度在围岩的蠕变作用下有所减小,但填充层厚度及其弹性模量对管片结构的作用规律几乎不受围岩蠕变的影响。  相似文献   

4.
环向让压衬砌(内置让压元件与喷射混凝土初期支护组合)对于高地应力软岩隧道围岩挤压大变形具有良好的控制能力,然而,目前环向让压衬砌的设计依然存在诸多难点,极大制约了其广泛应用。针对环向让压衬砌的刚度计算方法开展相关研究,根据让压元件的受力-变形特征(荷载作用下表现为弹性-让压-压实3个变形阶段),将环向让压衬砌的刚度变化划分为4个阶段,并通过等效变形原理和均匀化方法处理得到相应阶段环向让压衬砌的刚度计算公式;进一步,通过工程应用和数值模拟,验证本文提出的环向让压衬砌支护刚度计算方法的正确性与可靠性;最后,讨论让压元件不同参数(屈服应力和元件长度)对环向让压衬砌支护效果的影响。让压元件的屈服应力对环向让压衬砌应力路径影响显著,但对衬砌最终压力及位移影响并不大,而让压位移则对最终压力影响较大,并给出了相应的设计建议。研究成果可为高地应力软岩大变形隧道环向让压衬砌的设计提供一定的理论依据。  相似文献   

5.
王江  苑郁林 《科技交流》2006,36(2):11-16
乌鞘岭隧道穿越F7断层时遇到了高应力较弱围岩,针对F7断层的特点及软岩高应力特性,分析出隧道发生大变形的机理,并提供了对该段围岩高应力软岩的判断方法.对不同情况下的隧道提出了几种卸压——支护方式.  相似文献   

6.
乌鞘岭隧道穿越F7断层时遇到了高应力软弱围岩,针对F7断层的特点及软岩高应力围岩特性,分析出隧道发生大变形的机理,并提供对该段围岩高应力软岩的判断方法,对不同情况下的隧道提出了几种卸压-支护方式.  相似文献   

7.
研究目的:在实际地质环境中,隧道开挖所表现出来的各种变形破坏都是各种因素综合影响的产物。但顺层构造由于其分层特性和结构形式的特点决定了在这样的地质环境中开挖隧道,其围岩受力之后的变形和破坏具有一定的特殊性。本文以拟建某高铁宝云隧道为例,就硬-软互层顺层构造作用下隧道围岩开挖损伤变形开展数值模拟分析评价,主要研究不同岩层厚度影响下的隧道围岩变形、围岩屈服渐进性及稳定性,并给出强度折减至极限状态时硬-软互层组合隧道的变形破坏模式。研究结论:(1)薄层弯曲变形是不同岩层厚度构造作用下硬-软互层顺层隧道开挖的主要变形形式,厚层围岩虽体现出了较明显的滑移,但变形量值较小,隧道支护设计时应考虑岩层厚度控制的该变形特点;(2)硬软互层组合屈服区主要沿顺层面向软岩展布,层厚越小,屈服范围越大,以0.2 m层厚顺层向屈服区为典型,层厚超过0.4 m后,拱腰顺层面屈服区迅速减小,且随厚度增大,两个方向屈服区不断减小;(3)强度折减条件下,层厚超过1.5 m后,稳定安全系数趋于定值,围岩强度主要受软岩自身控制,受硬-软组合结构影响程度降低;(4)岩层厚度较小时,隧道围岩变形模式以岩层弯曲为主,随岩层厚度的不断增大,变形模式逐渐转变为顺层滑移为主、滑移与弯曲并存;(5)本研究成果对促进该高铁的顺利建设具有理论意义和工程价值。  相似文献   

8.
高地应力软岩具有变形量大、变形速率快、持续时间长、流变性强等特点,围岩流变性对衬砌结构长期稳定性影响大。以木寨岭铁路隧道为例,结合室内蠕变试验结果,采用Burgers流变模型,分析不同流变周期内支护结构受力随时间变化的规律。结果表明:(1)本文采用的Burgers模型能较好地反映围岩流变特性;(2)目前木寨岭隧道的支护结构形式,已施作的衬砌结构在以后数年发生压溃开裂的风险较大;(3)提高支护结构的长期稳定性及安全性,应从改变围岩流变性的角度出发,降低围岩的流变特性,增强围岩强度。  相似文献   

9.
研究目的:针对板状高地应力软岩隧道开挖的大变形问题,采用单层初期支护+双层二衬的结构形式进行支护,并进行现场试验,对初期支护、钢拱架以及两层二衬的变形与受力进行了测量,分析该支护结构在控制高地应力软岩隧道大变形方面的效果及该方案的可行性是本文的主要研究目的。研究结论:(1)传统的初期支护方式在控制高地应力软岩隧道的大变形方面效果不佳;(2)板状岩层的走向和岩层的倾角对高地应力软岩隧道开挖后的变形及受力会产生影响,一般来说,在垂直于板状软岩岩层(倾斜线)方向上的挤压力最大;(3)采用双层二衬结构,使初支与围岩一起产生变形而消除围岩的部分压力,第一层二衬起到强而稳定的支护作用并承担绝大部分的围岩压力,使第二层二衬受力很小而起到装饰作用,因此从高地应力软岩长期流变性的角度考虑,双层二衬结构对高地应力软岩隧道建成后的长期稳定性和安全运营具有很好的保障作用;(4)本研究成果可为类似工程的施工提供参考依据。  相似文献   

10.
软岩隧道的围岩变形计算   总被引:4,自引:0,他引:4  
文献[6]在考虑软岩的剪胀、蠕变和非线性破坏准则等影响后,推导隧道的围岩变形表达式.在此基础上,考虑软岩的塑性大变形特性后,分别根据相关联与非关联流动法则,推导出圆形隧道位移解、通过计算得出:在软弱的围岩或土中,剪胀角的大小对隧道塑性区软岩位移影响很大.  相似文献   

11.
昌福铁路隧道病害整治   总被引:1,自引:0,他引:1  
南昌至福州铁路隧道断层破碎带、岩爆、软岩变形、强富水等不良地质非常普遍,隧道出入口埋深较浅,围岩破碎,在隧道施工中出现了衬砌开裂、衬砌背后空洞、隧道渗漏水等病害。通过对此隧道病害的现场调查研究,并结合国内相关资料,针对衬砌开裂出现的三种不同情况,分别采用了锚固注浆、碳纤维加固以及嵌填沟槽后注浆加固等措施,采用压浆填充、封堵防水方法整治隧道衬砌背后空洞和渗漏水病害。整治措施实施后在隧道运营前变形已经趋于稳定,证明采取的处理方法合理有效。  相似文献   

12.
软岩通常具有较强的蠕变性,深部软岩隧道的围岩收敛和支护受力往往表现出明显的时效特性。因此,考虑隧道掌子面推进的同时,运用流变理论对深部软岩隧道的围岩应力变形时效规律进行分析具有重要意义。研究针对深埋软岩中圆形隧道的纵向开挖过程,同时考虑掌子面推进引起的应力释放效应和围岩自身的蠕变性,推导出隧道纵向施工中围岩应力变形的黏弹-塑性时效解。解答中假定围岩服从Burgers-MC黏弹-塑性模型(CVISC),隧道纵向为连续不间断开挖。基于所提出的理论解,对新疆特克斯软岩隧道开挖过程中的围岩变形应力进行了初步预测和分析;同时,通过对比FLAC数值模拟结果和现场监测数据,验证了解答的正确性和可靠性。进一步,基于解答深入研究深部黏弹-塑性软岩中隧道围岩的应力、变形及黏塑性区域随时间和开挖过程的演化规律。研究结果表明:黏弹性区和黏塑性区边界上应力是定值,与黏塑性区大小无关;在隧道开挖阶段,应力释放引起的围岩位移占主要成分,后期应力释放完成后,围岩蠕变变形占主要部分。本解答为深埋软岩隧道施工过程中的围岩收敛变形和应力预测提供了理论方法。  相似文献   

13.
研究目的:新建兰渝(兰州至重庆)铁路是我国《中长期铁路网规划》的重点项目,兰渝铁路两水隧道在施工过程中遇到高地应力,围岩最大水平主应力值为6.5~11.3 MPa,隧道围岩呈现变形大、速率快的特点。在隧道掘进施工前期,隧道初期支护结构变形大,部分钢拱架扭曲、断裂,支护结构失稳,初期支护结构侵入衬砌净空,拆换拱情况频繁发生。隧道贯通后,发现隧道已完衬砌局部区段出现衬砌混凝土开裂、掉块,断面变形乃至侵限现象,给隧道施工及运营带来极大的安全风险隐患。针对隧道衬砌出现的问题,经过会同有关专家充分分析其发生变形、开裂的原因,并就衬砌拆除换拱试验段工艺参数进行研究,通过严密的监控量测,分析隧道支护和衬砌结构受力和变形规律,提出合理的控制变形的工程处理措施。研究结论:(1)两水隧道通过区域地质构造十分复杂,软弱的薄层板岩、千枚岩或炭质千枚岩在高地应力作用下发生围岩大变形,造成较长段落初支变形和衬砌破坏;(2)在总结施工经验的基础上,结合大量的现场试验段围岩量测数据分析,采取双层初期支护和双层衬砌工程技术措施,进一步优化和增强初支拱架强度,可以有效的控制隧道大变形;(3)针对具有极高安全风险的衬砌拆除换拱施工,采用短拆除、快支护、设置临时套拱、打设锁脚锚管以及快速紧跟隧道二次衬砌等措施,可以进一步降低和控制安全风险;(4)本研究成果不仅是根据铁路大断面双线隧道通过软岩大变形地质条件下,出现罕见初支变形和衬砌破坏的工况,所采取的处理整治措施,而且对今后类似隧道工程施工中具有一定的指导价值。  相似文献   

14.
文献[6]在考虑软岩的剪胀、蠕变和非线性破坏准则等影响后,推导隧道的围岩变形表达式.在此基础上,考虑软岩的塑性大变形特性后,分别根据相关联与非关联流动法则,推导出圆形隧道位移解.通过计算得出:在软弱的围岩或土中,剪胀角的大小对隧道塑性区软岩位移影响很大.  相似文献   

15.
滚石灾害严重威胁山区铁路桥墩建设及运营安全。针对现有桥墩防撞装置存在缓冲效果差、不易安装修复等不足,开展防撞装置耗能机理及缓冲效果研究,提出采用具有优良耗能缓冲性能的泡沫铝和聚氨酯材料多层组合的防撞装置。结果表明:泡沫铝和聚氨酯材料均具有稳定的变形破坏模式和较长的应力平台区,可持续稳定地吸收能量;组合结构耗能效果与缓冲材料的厚度和密度分布相关,增加泡沫铝材料厚度和密度,组合结构吸能总量增幅较大,吸能效率和吸能稳定性受组合结构中的聚氨酯材料的影响较大;防撞装置缓冲材料按上层(表层)50 mm聚氨酯、下层(底层)50 mm泡沫铝的双层结构配置,防护效果最佳。  相似文献   

16.
盾构隧道作为一种复杂的三维线性地下结构,容易受围岩特性不均等因素影响产生不均匀变形,引发结构局部破坏等病害。为研究双层衬砌盾构隧道在运营过程中的纵向力学行为,结合武汉地铁8号线越江隧道工程,建立纵向三维壳-弹簧力学分析模型,结合工程实际探讨二次衬砌厚度对盾构隧道双层衬砌力学性能的影响,以期获取合理的二次衬砌厚度取值。研究结果表明:(1)盾构隧道双层衬砌结构的纵向等效弯曲刚度随二次衬砌厚度增加呈线性增加;(2)施作二次衬砌可降低隧道纵向不均匀沉降量及管片间的错台量,二者随二次衬砌厚度增加而减小,但幅度不大;(3)在隧道纵向出现极端不均匀变形条件下,施作二次衬砌会导致位移突变点附近部位的管片局部内力及环缝张开量增大;(4)综合分析盾构隧道管片衬砌变形及受力,同时考虑工程造价和二衬是否设置配筋等因素,对于直径12 m级盾构隧道,其二次衬砌厚度建议取20~35 cm。  相似文献   

17.
研究目的:基于高地应力软岩隧道在施工过程中产生大变形的问题,采取包含传统喷锚支护在内的三种支护方式现场进行试验研究,根据围岩变形、围岩压力、钢拱架应力和二衬混凝土应力等监测结果,分析兰渝铁路新城子隧道试验段的稳定性并选择适宜的支护方案。研究结论:(1)采用传统的喷锚支护方式难以有效解决高地应力软岩隧道施工中围岩的大变形问题;(2)采用环向注浆加固围岩+型钢拱架初支可以在一定程度上改善围岩的条件,减小围岩变形和钢拱架应力以及二衬混凝土应力;(3)采用双层初支,即采取先让后抗的支护方式,既可以吸收一部分围岩变形,减小初支的变形和钢拱架应力,同时也可以提供稳定的支护力,使二衬受力也相对较小,因此采用双层初支对控制高地应力软岩隧道的大变形具有明显优势;(4)本研究成果可为高地应力软岩中类似工程施工支护方案的选择提供参考。  相似文献   

18.
研究目的:混凝土板结构在铁路、公路隧道衬砌结构中广泛应用.而长期经受隧道围岩压力及荷载作用,不时有变形破坏,危及安全运营的事故发生.通过试验研究混凝土板结构受载变形破坏的特征,预测预报事故发生的可能性,为保障结构运营安全进行现场监测预报提供有效方法.研究结论:试验结果表明:(1)采用的时间序列分析方法预测混凝土板变形精度较高,所有测点的线性拟合相关系数均在0.93以上,预测的误差在10%以内;(2)实测值与预测值对比,误差较小,可预报板变形趋势;(3)可作为隧道衬砌结构现场监测应用的有效方法.  相似文献   

19.
随着铁路建设的快速发展,隧道工程的比重不断加大,云母片岩隧道围岩大变形已严重影响了隧道施工安全和进度,本文为解决这些问题,通过对宝兰高铁杨家庄隧道云母片岩结构特性、矿物成分、抗压强度和水理特性等工程特性的介绍,对云母片岩隧道围岩大变形特征及变形因素进行分析研究。(1)变形特征:沉降收敛变形量大,变形速率快,变形持续时间长,变形差异大,洞身纵向变形分布不均及破坏形式多样性;隧道围岩变形与隧道围岩压力有着密切相关性,且早期变形严重,半个月后逐渐趋于稳定。(2)变形因素:地形地貌、岩性特征、岩体结构、地下水及围岩压力是云母片岩隧道围岩大变形的主要因素;单斜地层和地形产生偏压、开挖卸荷后围岩受地下水渗流软化沿变质片理面及泥质夹层产生塑性蠕变,使围岩压力分布不均等因素是导致杨家庄隧道围岩大变形的根本原因。  相似文献   

20.
宜万铁路堡镇隧道高地应力软岩大变形段施工技术   总被引:1,自引:1,他引:0  
宜万铁路堡镇隧道穿越地层大部分为砂质页岩和粉砂质页岩,局部为炭质页岩,岩层软弱、节理较发育;隧道埋深大,地应力高,围岩强度低,高地应力软岩大变形区段长,施工过程中发生了严重的大变形。主要介绍高地应力软岩大变形段的施工措施,即:采用小导管注浆超前支护、采用短台阶和双侧壁相结合的开挖方法,初期支护采用喷混凝土+型钢钢架+锚杆+钢筋网的支护措施,控制每环仰拱开挖长度不超过4 m,及时封闭成环,及时施做二次衬砌,对隧道高地应力软岩段的预留变形量为15~30 cm,确保了隧道顺利通过软岩大变形区段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号