首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
上软下硬地层大跨无柱地铁车站地震响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究大跨度无柱地铁地下车站结构在上软下硬地层中的地震响应,以广州地铁11号线为依托工程,采用ABAQUS软件开展该类复合地层中车站结构的震害规律分析,对比研究软硬地层交界面处于车站结构不同位置时结构地震动响应特性的异同及规律。结果表明:1)在强震作用下,软硬交界面分别位于中板上下两侧时结构的损伤程度、最大相对水平位移、残余变形量及摆动形态均有很大差异;2)随着地震波峰值加速度的增大,交界面处于中板及以下时,其位置的变化造成车站结构地震响应的变化程度比交界面处于中板及以上时有大幅增长;3)车站结构顶板相对底板的加速度放大系数与地震波大小及软硬地层交界面的埋深密切相关;4)车站结构的地震响应随软硬地层间剪切模量比值的变化在一定范围内产生较大变化,当剪切模量比值小于1/40时,地震响应的变化趋势将不再显著。  相似文献   

2.
中庭式地铁车站因用大量横梁取代楼板来形成中庭大开口(顶层和中层楼板的开口率均超过50%),且站厅层无柱,站台层采用宽高比达7.5的薄壁柱,车站结构抵抗横向变形比如地震作用的能力,成为值得担忧的一个问题。为此,针对埋置于人工模型土中的中庭式地铁车站模型,进行了一系列1g振动台试验,探究中庭式地铁车站结构的地震响应特征,以及地震动强度对土和车站动力响应的影响规律。试验结果表明:地震作用下,站厅层横梁两端的峰值动拉应变最大,站厅层横梁两端为抗震最薄弱环节;中庭式车站侧墙与邻近土体的加速度响应差异在不同埋深处表现不同;地震动强度对车站结构和场地的地震响应均影响显著;随地震动强度增加,场地的卓越频率变得越不显著,其加速度傅里叶谱的主要幅值段趋向坐落于更宽的频带内;随地震动强度增加,顶板埋深处土和侧墙加速度放大系数差异逐渐递减;随地震动强度增加,侧墙上峰值动土正应力分布形状可能发生变化,且沿车站左、右侧墙的峰值动土正应力呈非对称分布;水平横向地震动输入下,中庭式车站存在摇摆运动,且车站顶板的竖向加速度随水平输入地震动强度的增加而增大。试验结论有助于更好地认识中庭式地下结构的地震响应规律,为类似结构的抗震设计提供参考。  相似文献   

3.
陈建民  项彦勇 《隧道建设》2012,32(4):506-513
为了研究相互邻近的地下结构的地震响应特征,以某新建地铁车站结构和上部密贴的既有公路隧道结构为对象,利用有限元分析软件MIDAS-GTS,对水平密贴的两个地下结构的地震响应进行数值模拟,分析公路隧道结构在有、无地铁车站结构时的地震响应,探讨结构接触面性质对水平密贴结构的地震响应的影响。计算结果表明:1)在设定条件下,地铁车站结构对公路隧道结构水平位移的影响幅度小于5%,但公路隧道顶板与底板的相对水平位移峰值增大了20%,水平加速度峰值增大幅度大于5%,隔墙动应力峰值增大11%,底板结构应力峰值增大150%;2)影响公路隧道结构动力响应的结构接触面性质主要是切向刚度,切向刚度增大,接触面范围内的公路隧道底板下侧的动应力减小,而接触面两侧的公路隧道底板的动应力却有明显的增大。  相似文献   

4.
有、无柱地铁地下车站地震响应对比分析   总被引:1,自引:0,他引:1  
为了解有柱与无柱地铁地下车站结构地震响应特性的异同,采用ABAQUS软件对2种地铁车站结构进行了水平向的非线性地震响应数值模拟,对比分析了在3种地震波不同峰值加速度作用下2种结构的响应特性。结果表明:1)2种车站结构的地震响应规律基本相似,在强震作用下均会受到严重的损伤,除侧墙与顶底板的连接处外,有柱车站的中柱与无柱车站的底板均为抗震的薄弱点,应注重加强其抗震性能;2)顶底板间最大的相对水平位移与输入波峰值加速度近似呈线性增大关系,且与波的频谱特性密切相关;3)在地震作用过程中产生的单向累积残余变形沿侧墙高度的变化曲线呈波浪状,最终摆向与最大摆幅的摆向一致;4)2种车站结构的加速度时程曲线形状相似,且相对基岩输入波有明显的放大。  相似文献   

5.
采用高承台群桩-独柱墩结构体,进行可液化场地群桩-土-桥梁结构地震相互作用振动台试验,再现自然地震触发地基液化及桩基破坏等宏观现象;通过试验监测了液化场地中地基的加速度、孔压反应以及桩-柱墩的加速度、位移、应变反应和上部结构的加速度反应等。结果表明:输入地震波幅值和埋深是影响砂层孔压的重要因素;地震作用中,随着场地液化的发展,自下而上砂层加速度先逐渐减弱后逐渐放大;高承台桩基地震响应与土层土性、地震动大小、场地液化程度等密切相关,地震作用下场地液化容易诱发高承台群桩体系的倒塌。  相似文献   

6.
陶连金  曹乾坤  石城  丁鹏 《隧道建设》2022,42(3):378-387
为研究装配式地铁车站结构在不同场地条件下的地震响应,基于有限元软件,建立地层-装配式地铁车站结构三维静动力耦合非线性有限元分析模型,分析不同场地类别、不同地震动峰值加速度以及竖向地震动条件下装配式地铁车站结构的地震响应,并给出装配式地铁车站的加速度、变形、应力及塑性损伤的变化规律。分析表明: 1)场地类别由Ⅱ类变为Ⅲ类时,车站结构顶底间最大相对水平位移与接头张开角逐渐增大,且增长幅度变大,但接头张开角仍较小(<0.10°),验证了接头的稳定性和安全性; 2)在Ⅲ类场地条件下,拱腰、拱肩以及侧墙上下端附近的围护结构等位置易出现塑性损伤; 3)相比单向水平地震动,增加竖向地震动会显著增大装配式地铁车站结构的变形、应力、接头张开角及塑性损伤。总体来看,在Ⅱ类场地条件下,输入地震动峰值加速度分别为0.1g和0.2g时,结构基本处于弹性工作状态; 在Ⅲ类场地条件下,输入地震动峰值加速度为0.4g时,结构处于弹塑性工作状态且塑性区体积较大。  相似文献   

7.
基于非液化场地-群桩基础-上部结构大型振动台试验,建立了非液化场地-桩-结构体系地震响应数值计算模型,在分析桩-结构体系动力响应基础上,深入探讨动力荷载下非液化场地中的桩基失效模式。通过对比数值计算模型所得典型地震响应结果与试验结果,验证了数值计算模型的有效性和合理性,进一步探讨了非液化地基中土-结构体系地震响应规律,重点关注在地震作用下桩基失效过程及桩基-结构体系地震破坏模式。结果表明:在地震作用下,土体加速度在松砂层中不再放大,在最上部出现一定放大,且桩基加速度反应也有相似规律;各深度处土体动剪应力-动剪应变滞回曲线表现出对角线斜率小幅减小的趋势,说明等效剪切模量也出现不同程度的降低,也即地基各处土体抗剪强度均有一定下降;桩身最大弯矩出现在桩身中下部,在桩头与土层交界面附近桩身剪力较大,说明可能发生桩头剪切破坏或桩身弯曲破坏。  相似文献   

8.
为了解沿海软土地区PHC管桩在地震作用下的动力反应、桩-土动力相互作用特性以及破坏模式,开展PHC管桩-土-结构模型体系的地震模拟振动台试验研究。通过输入3种不同地震波,并逐渐增加地震波峰值,研究预应力度、土体特性对模型体系的地震响应与破坏模式的影响。研究结果表明:土体饱和与否对模型体系的动力特性和地震响应影响较大,PHC管桩的预应力对其动力特性有一定影响,破坏模式也不相同;土体未饱和时,基本烈度地震作用下PHC管桩的一阶频率下降不大,土体饱和时,随着地震波激励的增加,模型体系的自振频率逐渐下降、阻尼比逐渐增大,PHC管桩-土-结构间的相互作用加大,结构开始损伤破坏,频率最大下降至初始频率的50%;预应力的存在可较显著地减缓地震作用下结构的损伤破坏;加速度峰值越大或者土体越深,孔压比越大,最大超过1.0,并出现液化现象,且液化持续时间远大于地震波持时。研究结果可为沿海软土地区PHC管桩的应用和规范的制定提供参考。  相似文献   

9.
为了研究地震作用下季节冻土区框架锚杆支护边坡体系的地震动力响应变化规律,考虑到季节冻土区边坡土体的季节分层特征,将未冻结土层处理为黏弹性Winkler地基模型,冻结层处理为中间剪切层,框架立柱处理为Euler-Bernoulli弹性梁,用线性弹簧和阻尼器来模拟锚杆锚固段与周围土体的相互作用,建立了季节冻土区框架锚杆边坡支护结构简化动力计算模型。基于D’Alembert原理并引入Dirac函数,给出了冻结期和融化期时框架-锚杆-边坡支护体系的运动方程;其次通过振型叠加法对其进一步解耦变换,并采用隐式时域逐步积分法对解耦后的体系方程组进行求解,最后将提出的计算方法应用于工程算例,且与振动台试验结果进行了对比分析。结果表明:相同地震波作用下,坡顶处加速度大于坡底,同一位置处的融化期峰值加速度比冻结期大,具有季节差异效应和高程放大效应;同时考虑冻胀和地震作用时冻结期的锚杆轴力和立柱弯矩大于地震作用时融化期的锚杆动轴力和立柱动弯矩;加速度、轴力等振动台试验结果与理论计算值在总体趋势上较为一致,即提出的计算方法能够刻画地震作用下季节冻土区框架锚杆支护结构工作状态。研究结果可为季节冻土区框架锚杆支护...  相似文献   

10.
为了研究长盾构隧道在考虑行波效应的地震动作用下的纵向响应规律,以上海沿江通道盾构隧道为原型,利用多功能振动台台阵系统,设计并完成了盾构隧道的多点振动台模型试验。鉴于长大盾构隧道工程规模和多点振动台试验系统的能力,试验几何相似比确定为1∶60;基于Buckingham-π定理以及量纲分析方法,确定了试验所需的土与结构的动力相似关系;为了模拟沿隧道纵向的行波输入,设计并制作了节段式模型箱,箱体总长22m,分为4个主动箱以及3个从动箱,箱体之间通过弹簧铰相连;以砂子和锯末按照一定质量比拌合来优化配置模型土,并通过室内三轴试验进行测试验证;考虑土-结构相对刚度相似比为控制指标,选取PE材料作为模型材料;根据刚度等效原理,设计并制作了盾构隧道的多尺度结构模型。试验以上海人工波为地震动输入,通过一系列工况的多点振动台试验模拟,得到了行波效应下盾构隧道模型结构的地震响应规律。试验测试数据包括行波效应下模型土和模型结构的加速度响应、隧道管环环缝的伸缩量响应等。对比分析了一致输入和行波输入下隧道结构的动力响应。试验结果表明:相比一致激励输入,行波效应会明显放大模型结构的加速度响应和环缝变形响应,从而对隧道抗震产生不利影响;地震动非一致激励应该在盾构隧道的纵向抗震设计中得到足够重视。  相似文献   

11.
以大型振动台模型试验为手段,以昆明市某边坡为原型,对地震作用下桩板式抗滑挡墙加固边坡的加速度、位移和动土压力响应的分布特征和变化规律进行研究。以大瑞人工波为研究对象输入地震波,设计相似比为1∶20的桩板墙加固边坡模型与自然边坡开展对比实验。研究表明:自然边坡在Ⅷ级地震烈度下,边坡体后缘产生大量张拉裂隙,后缘与母体脱空,具备滑坡的前兆特征,与自然边坡试验现象比较,桩板墙加固边坡的抗震稳定性较好,边坡在设防烈度(Ⅷ基本烈度)范围内保持稳定;当加载地震波峰值加速度相对较小时,水平加速度延高程有明显放大效应,会对自然边坡稳定性产生不利影响;当加速度相对较大时,有水平加速度延高程既出现放大现象也产生缩小现象;桩板墙加固后边坡对地震波的放大效应明显比自然边坡土体小,说明桩板墙能有效减弱边坡的震动效应;在地震动激励下,动土压力峰值随着加载地震波幅值的增大而增大,在同一加载工况下,离桩顶越远,动土压力峰值越大,桩板墙最大土压力出现在靠近桩板墙底的位置。试验结果有助于揭示该结构抗震机制,可为支挡结构的选取与桩板墙结构抗震设计提供依据。  相似文献   

12.
为了研究废弃钢渣回填土工格栅加筋挡土墙在地震作用下的抗震性能,根据量纲分析理论中的Froude常数与相似比原理设计了土工格栅加筋挡土墙振动台试验模型,利用汶川地震近场什邡波(SF)和远场松潘波(SP)作为主要加载波形,以废弃钢渣为回填料,开展了土工格栅加筋钢渣挡墙的振动台模型试验.考虑地震强度的影响研究加筋挡土墙在不同...  相似文献   

13.
竖向地震动对地震边坡稳定性有很大影响,基于此,设计了基覆边坡的模型试验(水下爆炸振动),对界面光滑无支挡结构(A坡)、界面光滑有支档结构(B坡)及界面粗糙无支挡结构(C坡)三种类型基覆边坡概化模型的破坏模式和竖向加速度响应特征进行了研究。利用加速度比这个无量纲量描述测点加速度响应的主要特征,在此基础上对比分析三种结构的基覆边坡的破坏模式、加速度响应特征和桩板墙的土压力分布。结果表明:三种边坡的表层松散土体均产生碎屑流状的下滑滚动,且C坡最明显,A,B坡沿交界面错动且在覆盖层顶部可以看到明显的下错现象;A坡  相似文献   

14.
随着刚性桩复合地基在土木工程中的广泛应用,其抗震性能越来越受到人们的关注,而复合地基中桩身动力响应是确定其抗震能力的关键。为此依据相似理论,设计制作出一套主要由钢制砂箱、砂土以及比例为1∶10的3×3群桩模型组成的试验装置。将装置置于伺服加载系统下进行拟动力试验,按照相关规范输入地震波加速度时程并施加上部荷载,获得不同工况下刚性桩复合地基桩身应力应变响应结果。试验结果表明:①各桩最大剪力均发生在桩顶处,对比不同位置桩的剪力,角桩剪力响应值最大;②各桩最大弯矩值均发生在Z/L=0.3~0.43的区间内,对比不同位置桩的弯矩,角桩的桩身弯矩响应值大于边中桩,而边中桩又大于中心桩;③保持地震波的加速度峰值不变,增大施加的上部荷载,剪力和弯矩响应值会有比增大加速度峰值更大的增加幅度。  相似文献   

15.
以某高原铁路高烈度地震区路堑段为背景,采用有限元方法建立锚头设置弹簧组件的减震锚拉桩板墙分析模型,研究锚索体系刚度对桩板墙地震响应特征的影响规律,探讨锚头弹簧刚度的优化参数范围。结果表明:设置减震锚头的桩板墙锚索受力较普通锚拉式桩板墙结构有明显改善,地震作用下锚索拉力峰值、震荡幅值及残余拉力随锚索体系刚度降低近似呈线性减小规律,但锚索对桩身的约束作用减弱,桩顶动位移峰值及残余位移呈反“S”形增大。为了协调和统一地震作用下降低锚索拉力和桩顶位移的抗震需求,应根据桩顶水平位移的极限对锚头的弹簧刚度进行优化。  相似文献   

16.
以玉蒙铁路碎石桩加固处理路堤液化地基为工程背景,采用水平振动模拟地震荷载进行了碎石桩复合地基路基的振动台模型试验,试验测试了不同位置的孔压,对孔压的时程、分布特点和孔压比的变化进行了分析。水平加速度为0.3g时,路堤坡脚以外地基产生液化,而路堤范围内未出现液化。采用碎石桩复合地基加固铁路液化地基时,需适当加宽加固地基的宽度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号