首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
琼州海峡隧道超大直径盾构新技术展望   总被引:1,自引:0,他引:1  
陈馈 《隧道建设》2014,34(7):603-607
为适应跨江越海隧道工程建设不断发展的需要,盾构正在向超大直径、超长距离、超大埋深方向发展。以琼州海峡隧道为工程背景,结合其超大埋深、超高水压、超大断面、特长距离及地质复杂多变等特点,在详细分析国内外大埋深超大直径盾构技术发展的基础上,对琼州海峡隧道等类似大埋深超大直径盾构工程所面临的超大直径盾构设计制造、盾构特长距离掘进、超高水压条件下盾构密封及特长隧道水下对接等技术挑战进行了论述,并对预期可望获得的大埋深超高水压条件下的超大直径盾构总体设计及集成技术、高效破岩及长寿命刀盘刀具优化设计技术、盾构防水密封设计与制造技术、常压换刀装置设计技术、特长距离掘进地中对接施工装备技术等盾构新技术进行了展望。  相似文献   

2.
蒋超 《隧道建设》2017,37(2):207-214
在建的佛莞城际铁路狮子洋隧道是第2条下穿珠江口狮子洋海域的盾构隧道,具有大直径(13.1 m)、高水压(最大水压0.78MPa)、地质条件复杂(全断面土岩复合地层、穿越3处破碎带和2处水下断层)、独头掘进距离长(长4.9 km)、行车速度高(时速200 km/h)等显著特点。本文以该隧道工程为背景,采用工程类比、资料调研、经验总结等方法,通过对工程总体设计及关键技术的阐述,解决了基岩地层水下盾构隧道合理埋深选择、管片环向错台控制、高水压管片接缝防水、循环荷载下基底软弱地层沉降控制、内部结构同步施工等技术问题,提出了铁路盾构隧道管片双掺钢纤维及聚丙烯纤维以提高耐火性的方法,同时对复合地层(尤其是破碎地层)盾构选型、高水压条件下开舱技术进行了探讨。  相似文献   

3.
随着中国交通建设和城市建设的迅猛发展,越江跨海盾构隧道工程大量增加,而且工程规模(隧道的直径和长度等)和水压条件也在增加。现阶段,仍未明确定义高水压,但一般以0.5 MPa作为高水压的分界线。近期,中国在长江、黄河以及珠江等所建设的高铁、公路以及地铁等盾构隧道工程水压均超过了0.5 MPa,正在筹划建设的琼州海峡隧道等水压更大,将高达2.0 MPa,面临巨大挑战。为此,国家决定针对超高水压(2.0 MPa)越江海长大盾构隧道工程安全问题展开“九七三”计划基础研究。研究采用理论分析、物理试验(室内、室外试验和模型试验)、数值模拟分析和监控测量等多种手段,针对其中涉及的多元、多相和多场耦合物理本质,对高水压水土与结构静动相互作用机理、盾构掘进中的动静力学机理、隧道结构特性及防水特性动态演化机理等核心问题进行深入系统的基础研究,提出了高水压下考虑渗流条件下的水土荷载计算理论和深水盾构隧道地震分析方法,建立了“机-土”动态作用力学模型,提出了盾构姿态、刀具磨损、开挖面稳定和高压成膜及闭气控制方法,提出了高水压大直径盾构隧道衬砌结构设计理论和高水压盾构隧道接缝长期防水安全与监控技术,最终形成超高水压越江海长大盾构隧道工程安全控制理论体系。为确保超高水压越江海长大盾构隧道工程安全提供设计理论依据,为实现大直径泥水盾构在超高水压等复杂条件下安全长距离施工提供理论支持。  相似文献   

4.
正2018年7月13日9点18分,埋深在海平面下60 m、目前国内最深过海地铁隧道——厦门地铁3号线,过海段右线率先掘进至工法交接点(盾构施工转换为矿山法施工),安全、质量、工期全面受控。施工人员于海平面下60余m的海域作业,承受高达0.538MPa的非饱和气压换刀作业,创造了国内过海泥水盾构掘进施工最新纪录。超高强度下的带压换刀作业是3号线过海盾构掘进施工中遇到的最大挑战。据悉,正常人承受压力是0.1 MPa,目前国内盾构  相似文献   

5.
陈馈 《隧道建设》2013,33(8):626-632
为适应水底隧道盾构法技术的大深度化施工需求,通过研究带压换刀装置、超高水压条件下常压进入刀盘轮幅的常压换刀装置、超高水压作业设备的配置、超高水压进舱换刀开挖面透气控制标准与降低开挖面透气性的措施、超高水压作业程序、超高水压换刀压缩气体压力确定及超高水压作业模式的确定等,以解决超高水压条件下刀具检查与更换的技术难题。得出饱和气体盾构进舱换刀的作业原理与饱和气体潜水作业基本相同,具有实施的可能性。  相似文献   

6.
上海长江隧道工程采用φ15.43m泥水气盾构掘进机,一次掘进距离7.5km,隧道直径和一次推进距离均创世界之最。工程难度大、风险高,是上海长江隧桥项目的关键控制节点工程。该文主要介绍了工程概况和超大直径、超长距离盾构掘进施工及其风险控制措施。  相似文献   

7.
论文以南京纬三路过江通道工程为依托,研究浅覆土、软硬不均地层等复杂地质条件下的盾构施工技术,在软硬不均地层盾构掘进模拟的基础上对过江通道的地表沉降、衬砌管片变形与支护结构受力等进行综合分析:(1)在最大水压0. 74MPa的情况下,衬砌管片顶、底部所受岩土体压力约为700至800kPa,侧向压力约为300kPa;(2)隧道施工后引起的最大沉降值为41. 8mm。隧道管片在受到垂向的挤压后,其侧向最大外延变形并非发生在管片水平两侧,而是发生在管环上部偏两侧的位置;(3)当覆土厚度为20. 5m时,衬砌管片顶部发生位移值最大,为6. 33mm,随着覆土厚度的不断增大,衬砌管片顶部的位移值不断减小。这些研究结论可为今后类似条件的过江越海隧道工程提供借鉴,有力提升我国跨江越海隧道工程的建设水平。  相似文献   

8.
正2020年1月20日,青岛地铁8号线大洋站—青岛北站东侧过海段泥水盾构安全到达接收点,标志着地铁8号线5. 4 km过海隧道顺利贯通。这是目前国内最长的过海地铁隧道,创造了国内首例泥水盾构3节分体始发和过海隧道泥水盾构月均掘进220 m共2项全国纪录。青岛地铁8号线全长61. 4 km,共设车站18座。大洋站—青岛北站区间全长7. 9 km,其中海域段长5. 4 km,是目前国内最长的过海地铁隧道。由于地质条件极其复杂,经反复论证确定采用"盾构法+矿山法"对打施工,东侧过海段2. 9 km采用泥水盾构法施  相似文献   

9.
为解决武汉长江隧道施工中的难题,中铁隧道集团先后投人500万元科研经费,重点开展了13个课题的科研攻关,并取得了多项突破:1.首次自主完成了4.5巴高压进仓作业,解决了高水压下刀具检查与更换等难题。2.加强了盾构的姿态控制与管片选型的技术研究,解决了大断面、小曲线半径的隧道施工中管片易破损的难题。3.刀盘刀具优化设计,解决了盾构穿越软硬交错地层的技术难题。4.实现了掘进距离超过2500m不换刀,采用高分子聚合物泥浆体系解决高水压富水砂层隧道开挖面的稳定问题。  相似文献   

10.
为了实现可在2.0 MPa高水压环境下开展盾构试验研究的基础试验条件,结合拟建的琼州海峡隧道工程背景,充分调研了国内外盾构模型机研究成果,并根据试验研究的需求,研发了高水压多功能泥水平衡盾构模型试验平台。试验平台研制过程中攻克了在缩尺盾构模型机中实现泥水循环功能的问题,解决了高水压(2.0 MPa)下盾构机以及土箱整体强度和密封问题,实现了盾构姿态改变、变覆土高度等功能。按照一定的试验先期准备步序,在不同水压条件下,对泥水平衡盾构开挖过程中盾构姿态动态变化规律进行了模型试验研究。试验平台包括模型土箱、盾构模型机、液压泵站、电控柜、控制台、泥水循环系统等部分,可在200 m水头的高水压条件下进行泥水盾构施工的模型试验。研究结果表明:自主研发的泥水平衡掘进模型试验平台可在高水压条件下正常进行工作,并可进行与泥水盾构施工相关的模型试验;盾构姿态角改变量与盾构掘进距离的线性拟合结果表明,二者的拟合精度较高;随着试验水压的升高,在水平方向以及竖直方向上盾构姿态调整的难度逐渐增大;通过有土环境与无土环境的对比可知,高水压与地层反力的双重约束对盾构姿态控制提出了更高的要求。  相似文献   

11.
为解决苏通GIL综合管廊隧道工程超高水压盾构隧道接缝防水设计这一关键问题,首先,通过经验类比与理论分析,提出采用双道密封垫的接缝防水形式。考虑该隧道内部高温的不同影响,近管片内弧面的内道密封垫与近管片外弧面的外道密封垫设计水压值分别设定为1. 92、1. 60 MPa。然后,结合数值模拟分析,设计并筛选得到内外双道密封垫断面型式。最后,通过压缩性能试验和防水性能试验分别测得试验断面的密封垫压缩性能、闭合压缩力及防水性能。试验结果表明:设计的内外道密封垫接缝在张开量为8 mm、错缝量为15 mm时,防水能力分别达1. 94、1. 80 MPa,可满足本工程的防水性能要求。  相似文献   

12.
张学军  戴润军 《隧道建设》2006,26(Z1):25-27
深圳前湾燃机电厂过海管廊盾构工程,其中接收井段管廊隧道共有358 m,岩石平均单轴抗压强度达98 MPa、最大达108 MPa的硬岩地层,采用盾构法施工存在较大难度.为减少施工风险,拓展泥水平衡盾构在较长距离与硬岩地层中的施工配套技术,开展了专项课题研究,采用了钻爆开挖与初期支护、盾构机空载推进拼装管片通过、管片背后注浆的施工工艺,并取得了圆满成功.介绍了盾构在矿山成洞段的推进技术.  相似文献   

13.
以琼州海峡跨海隧道工程为例,在初步了解琼州海峡隧道高水压、大直径等工程难点的基础上,结合隧道场地的工程地质条件,利用修正惯用法与ANSYS有限元计算软件对衬砌管片的内力与变形进行计算。依据计算结果,对拟建的盾构法隧道衬砌管片进行了初步设计,进一步对钢筋混凝土管片方案、钢管片方案与混合管片方案在受力与经济性方面进行了方案比选,给出了适用于琼州海峡跨海隧道工程的管片设计方案。  相似文献   

14.
肖晓春 《隧道建设》2013,33(10):866-873
意大利Sparvo隧道采用直径为1555 m、开挖断面达到15615 m的土压平衡盾构进行掘进施工,是当时世界上最大直径的盾构法隧道工程之一,其施工风险高、技术难度大为业界所公认。扼要介绍意大利Sparvo隧道工程所采用的一些关键技术: 1)盾构装备的选型; 2)衬砌管片的设计与生产,包括混凝土配合比设计、配筋设计与调整、管片接头、管片止水带以及管片预制厂情况; 3)超大断面盾构隧道掘进施工关键技术,包括土体改良、易燃易爆混合气体的对策和盾构原地掉头。这些技术较好地解决了该隧道施工中出现的诸多难题,可为今后同类工程提供借鉴与参考。  相似文献   

15.
刘欣  刘鑫  柳宪东 《隧道建设》2018,38(5):805-808
为提高盾构隧道掘进的施工效率、降低盾构管片排版错误的风险,针对管片类型为标准环+转弯环(为双面楔形)组合的盾构隧道,提出一种错缝拼装形式的管片预排版方法,并采用几何迭代法求出与目标线路偏差最小的一种盾构管片拼装姿势,可有效解决盾构隧道掘进过程中管片类型选择和拼装点位选取的施工难题。最后以南京地铁3号线某区间为例验证所采取方法的正确性,对盾构隧道掘进的施工组织和施工误差控制具有重要的指导意义。  相似文献   

16.
戴志仁  任建  李小强  王天明 《隧道建设》2019,39(6):1005-1013
为确保国内首例富水砂卵石地层盾构隧道穿越铁路咽喉区道岔群工程顺利实施,通过工程类比、数值计算与现场监测数据分析相结合的手段,基于列车通过速度与道床形式,提出道岔区道床与轨道变形控制标准(≤1 mm/d),在道岔区纵横抬梁无条件实施的情况下,提出超长大管棚超前预支护、既有人行通道加固与跟踪注浆以及盾构保压与天窗期分段掘进等一系列主动控制措施。实践结果表明: 1)顶进工艺、钻头刚度与导向控制是密实砂卵石地层高精度超长大管棚施工工艺的关键技术; 2)对既有铁路下方人行通道加固,可起到纵向大刚度挑梁的作用,在通道两侧设置的袖阀管跟踪注浆,可有效补偿盾构掘进引起的地层损失与施工扰动位移; 3)在土舱压力与掘削面稳定得到保障时,天窗期盾构分段掘进的不利影响可以得到控制。  相似文献   

17.
《公路》2017,(9)
腐蚀环境下盾构隧道管片钢筋锈蚀严重影响隧道结构的长期安全使用性及耐久性。针对这一现状,采用数值模拟的方式,通过考虑时间效应,探究在不同环境条件下盾构隧道100年服役期内管片钢筋锈蚀规律,得到的结论主要有:随着隧道服役时间的延长,钢筋表面累积的离子浓度不断变大,但不同位置处累积的最大离子浓度不同,越靠近接缝面位置处离子浓度越大;管片外侧水压越大,钢筋同一位置处累积的离子浓度越大,出现锈蚀的时间越短;改变管片外侧表面氯离子浓度同样会影响钢筋位置处离子浓度,其值越大,钢筋同一位置处累积的最大离子浓度越高,出现锈蚀的时间越短;提高腐蚀环境中盾构隧道管片衬砌保护层厚度,是延缓钢筋位置达到锈蚀临界浓度时间以及保障隧道结构安全承载的有效手段。  相似文献   

18.
《公路》2015,(10)
依据汕头苏埃过海通道工程(盾构隧道)方案设计,简要介绍了目前国内外常用的3种盾构始发方式。结合苏埃过海通道工程(盾构隧道)的自身特点,从平纵、结构设计、造价、工期以及施工要求等5个方面进行综合比较,从而最终推荐出适合本项目的较合理的盾构始发方案,相关结论可供类似项目设计参考。  相似文献   

19.
赵月 《隧道建设》2015,35(6):547-553
依托厦门市轨道交通3号线跨海隧道工程,分析了超长跨海隧道的工程特点、功能需求,针对特点和需求,从地质选线、工法选择和结构设计等方面,阐述了超长跨海隧道的土建方案设计理念,重点对施工采用"盾构+矿山+盾构"的组合工法、海域区间通风排烟道方案、风井位置选择和隧道结构断面形式选择进行了介绍。并对大小洞组合方案、三洞组合方案和单大洞方案进行了方案比选,最终确定采用大小洞方案。最后,对海底盾构与矿山对接、海底超长地铁隧道防灾救援、高水压跨海隧道结构防排水措施等关键技术问题进行了初探并提出了进一步研究的建议。  相似文献   

20.
周鲁  孙晓玲 《隧道建设》2014,34(Z1):191-195
针对黄河下游“地上悬河”的特点,对市区穿黄河大直径盾构隧道的安全覆土厚度,盾构隧道掘进对黄河两岸堤防工程的影响、管片结构及接缝防水3个关键技术进行研究。主要研究结论如下: 1)确定了过河段河床最大冲刷深度,并基于此研究了隧道过河段控制埋深及纵坡设计; 2)基于隧道控制埋深,验算了隧道对黄河两岸堤防的影响,映证了控制埋深的正确性; 3)进行盾构管片、接缝设计及弹性密封垫设计,并验算管片接缝防水性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号