首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《黑龙江交通科技》2016,(6):144-145
碳纤维筋桥梁加固是一项新的应用外粘高性能碳纤维复合材料增强结构技术,碳纤维筋与高强聚合物砂浆的联合使用充分利用了纤维棒筋的抗拉伸强度、聚合物砂浆的快凝强度和砂浆与钢筋混凝土结构的温缩模量的近似特性,提升钢筋混凝土结构的承载能力,达到维修、加固、利用与修旧翻新的综合作用,提升桥梁加固结构安全领域的技术水平。  相似文献   

2.
纤维复合材料在桥梁加固中的应用   总被引:4,自引:0,他引:4  
纤维复合材料补强加固混凝土结构是近年来出现的一种新兴的、科技含量较高的补强加固技术,已被应用于国内外的桥梁加固工程中。通过与传统的补强加固材料比较,纤维复合材料具有质量轻、比强度大、比刚度大、抗疲劳、耐腐蚀等优良的力学性能。在桥梁加固施工中,可以充分用纤维复合材料的高强度、高弹性模量以及施工便捷、易粘贴等特性,在混凝土结构的受拉区粘贴纤维复合材料,使混凝土结构中的裂缝扩展得到抑制,承载能力得到提高,结构受力性能得到改善,从而达到高效加固的目的。  相似文献   

3.
纤维增强聚合物(FRP)强度高、重量轻、不生锈,是一种很好的砼加筋材料。由于它的延性差,有脆性破坏的危险,除作为加固材料外,尚未得到普遍应用。这里提示了利用钢质芯棒加外围FRP纤维制成的HRS筋棒来取代钢筋,既可以提高构件的极限承载能力,又具有较高的延性,是一种极具竞争力的加筋材料。  相似文献   

4.
目前钢筋混凝土梁侨抗弯加固的方法主要包括加大截面、改变结构体系、粘铜加固、焊接补筋、体外预应力加固和纤维增强复合材料加固等,这些方法育着各自的适用景件和结构类型。结合工程宴践综合比较这些方法,对工程建设具有一定的参考价值。  相似文献   

5.
从复合主拱圈加固石拱桥加固前后力学性态的角度,结合具体的实际加固工程,对加固前后主拱圈截面内力进行计算,阐述主拱圈截面强度和整体"强度-稳定"性提高率,验算新旧拱圈结合面抗剪承载力和新增结构对原结构的影响,提出一项基于承载力提高率的加固增强总体效果评价指标,以期对石拱桥加固设计方案比选、加固质量评定有一定的积极指导作用。  相似文献   

6.
概述 用“纤维增强聚合物”(FRP)复合材料对钢筋砼梁进行抗剪加固是一种有效而简单的方法。FRP材料重量轻、抗腐蚀性能好,具有巨大的抗拉潜力。目前在抗剪加固时,是直接把FRP纤维(如碳纤维布)贴在腹板两侧,也可以绕过底面形成U形箍,可以连续地大块粘贴,也可以分条隔、开粘贴。  相似文献   

7.
在高性能混凝土中掺加聚丙烯纤维可以大幅度提高混凝土韧性,从而提高了混凝土的耐久性。研究了纤维对增强高性能混凝土品质的影响。试验结果表明,掺加体积率为0.9%聚丙烯纤维的C60纤维增强高性能混凝土较基准混凝土在抗折强度、疲劳特性、抗渗、抗冻等方面都有很大的提高。纤维增强高性能混凝土有很广阔的发展前景。  相似文献   

8.
纤维增强沥青混合料性能的研究   总被引:1,自引:0,他引:1  
通过对沥青混合料掺加纤维的研究 ,系统分析了纤维增强沥青混合料的马歇尔稳定度、水稳定性、高温稳定性、低温抗裂性及耐疲劳性能 ,探讨了纤维增强沥青混合料的强度形成机理 .并与普通密级配沥青砼进行了对比、分析 .结果表明 :纤维增强沥青混合料是一种具有优良品质的沥青路面材料 .  相似文献   

9.
纤维增强复合材料在结构加固中的研究和应用成为当前热点。基于FRP材料的分类和特点,比较了各种材料的性能和特点,分别对其在土木工程各领域的应用进行分析,从而发现在结构加固中存在的问题,并提出解决办法,最后对其在结构加固方面的研究与应用进行展望。  相似文献   

10.
纤维混凝土是一种优良的建筑材料,相对于普通混凝土,它具有良好的抗拉强度、抗弯强度、延伸率、韧性、抗冲击强度等,文中重点介绍了纤维混凝土的原理以及纤维混凝土中钢纤维增强聚合物改性混凝土的应用技术。  相似文献   

11.
为了获取玄武岩纤维布加固损伤混凝土梁的抗剪性能参数,并为玄武岩纤维布加固损伤混凝土梁的设计与施工提供理论依据,通过试验分析,研究了不同剪跨比、加固量、初始荷载等情况下梁的抗剪承载力变化规律,提出了玄武岩纤维布加固损伤混凝土梁的抗剪承载力修正计算公式。试验结果表明,梁的抗剪承载力受锚固方式、初始荷载和剪跨比的影响较大,采用玄武岩纤维布加固钢筋混凝土梁后,可以有效提高梁的抗剪承载力。  相似文献   

12.
排水沥青路面因其在安全、舒适、环保等方面的显著优势,在我国的应用广泛。以木质素纤维和聚丙烯纤维两种外掺增强纤维透水沥青混合料(PAC)为研究对象,研究透水沥青混合料的路用性能。结果表明:两种纤维增强PAC路面的渗水系数均较高,外掺木质素纤维的排水沥青路面渗水性能更优;聚丙烯纤维沥青混合料与木质素纤维沥青混合料的低温抗裂提高幅度相当;聚丙烯纤维增强沥青混合料的浸水残留稳定度和冻融劈裂强度均优于木质素纤维增强沥青混合料,水稳定性更优;混合料的疲劳寿命均与纤维含量呈正相关,在相同掺量时,聚丙烯纤维增强混合料疲劳寿命明显高于木质素纤维增强混合料;木质素纤维在建设期具有一定的经济优势,鉴于聚丙烯纤维混合料整体性能较优,决策时仍需综合考虑项目经济条件和全寿命成本。  相似文献   

13.
张增军 《交通标准化》2009,(11):236-238
玻璃纤维水泥砂浆是一种用于加固石拱桥的复合材料,其基质材料为水泥,增强材料为玻璃纤维。它的强度虽低于碳纤维,但与圬工材料具有更好的相容性,能显著地提高结构承载能力。加固后的结构,其破坏模式优于碳纤维加固,且破坏前有明显的预兆。  相似文献   

14.
玄武岩纤维水泥砂浆的力学性能研究   总被引:2,自引:0,他引:2  
以有机聚丙烯纤维为对比,进行了无机玄武岩纤维水泥砂浆的抗压、抗折、抗拉伸及抗弯系列力学性能试验研究。研究结果表明:在最佳掺量下,玄武岩纤维水泥砂浆的各种力学性能优于聚丙烯纤维水泥砂浆;玄武岩纤维对水泥浆体早期具有显著的增强作用,但降低了水泥砂浆的28d强度;掺入玄武岩纤维可以增加砂浆的韧性,对砂浆的抗拉强度改善起到了一定作用;玄武岩纤维对砂浆的抗弯破坏强度改善不显著,但明显增大了相同荷载下试件的挠度。  相似文献   

15.
聚丙烯纤维喷射混凝土加固桥梁施工技术的研究   总被引:1,自引:0,他引:1  
通过研究喷射混凝土的施工工艺特征,分析了聚丙烯纤维喷射混凝土加固桥梁施工技术的原理理论。利用聚丙烯纤维喷射混凝土加固拱桥试验,分析了聚丙烯纤维喷射混凝土加固桥梁施工技术优缺点及影响因素。  相似文献   

16.
在碳纤维和玻璃纤维混杂纤维布和预应力碳纤维加固混凝土梁试验研究成果的基础上,提出了用预应力混杂纤维加固混凝土结构的方法,并对预应力碳/芳纶纤维布加固梁的抗弯性能进行分析.利用预应力混杂纤维可以进一步提高纤维布的使用性能,减少变形并有效的抑制了裂缝的扩展,降低早期破坏的风险.混杂纤维的抗弯性能、延伸性能以及经济性均优于单一纤维.  相似文献   

17.
顾维  郭芳 《湖南交通科技》2023,(4):74-78+84
为研究纤维高强混凝土在不同环境介质长期作用下的强度变化规律,探究不同纤维掺入方法对高强混凝土耐久性能的影响。采用不同纤维种类与掺量制备了多组纤维高强混凝土试件,并对试件施加不同的环境介质影响,测试了纤维高强混凝土试件的28 d与180 d抗压强度与弯拉强度。结果发现:硫酸盐介质长期作用对高强混凝土耐久性影响最大,适量纤维的掺入有利于增强高强混凝土的强度与耐久性。试验表明:当纤维掺量为1%时,钢纤维高强混凝土具有最佳耐久性能;当纤维掺量为0.45%时,长期空气介质和长期水介质作用下的聚丙烯纤维混凝土具有最佳的弯拉强度;相较于单掺纤维,在不同环境介质作用下混杂纤维的高强混凝土表现出更好的抗压强度与弯拉强度,耐久性能得到了提升。  相似文献   

18.
玻璃纤维水泥砂浆是一种用于加固石拱桥的复合材料,其基质材料为水泥,增强材料为玻璃纤维.它的强度虽低于碳纤维,但与圬工材料具有更好的相容性,能显著地提高结构承载能力.加固后的结构,其破坏模式优于碳纤维加固,且破坏前有明显的预兆.  相似文献   

19.
纤维用于增强沥青混合料应具备优秀的力学性能、耐高低温性能、很好的分散性等技术性质.本研究在对常用聚丙烯腈纤维、聚脂纤维、木质素纤维三种纤维增强沥青混合料的高温稳定性、低温抗裂性、水稳定性、抗剪强度性能进行试验研究及比较分析的基础上,应用灰色关联分析方法建立纤维性质与外掺纤维沥青混合料路用性能之间的联系,进行定量的影响因素分析对比,确定纤维不同技术性质影响沥青混合料性能的大小差异,对于今后沥青路用纤维的优化选择、纤维沥青混合料的应用具有十分重要的意义.  相似文献   

20.
混杂纤维片材拉伸性能研究   总被引:2,自引:0,他引:2  
参考标准GB/T3354-1999测试了由碳纤维、玻璃纤维和尼龙纤维等编织的不同混杂纤维布和增强环氧树脂复合板的拉伸强度、弹性模量和拉伸过程曲线等,分析了混杂比例对干纤维布和纤维增强环氧树脂板拉伸性能的影响。结果表明:与1C1G和2C1G纤维布相比,1C2G单向纤维布呈现出更为理想的分级破坏形式,应力传递更稳定;在碳、玻璃混杂纤维增强环氧树脂板体系中,1C2G复合板延性优越,最大延伸率达1.68%;与碳、玻璃混杂纤维增强环氧树脂板相比,含有尼龙纤维的混杂纤维树脂板在拉伸过程中具有下降段,延性效果改善良好,但抗拉强度偏低;环氧树脂在复合材料中进行应力传递和重分配,有效提高了复合材料的整体受力性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号