首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A model of demand for parking, evolving over time, is proposed. The model features both extensive (whether to park) and intensive (for how long to park) margins of parking demand, allows multidimensional heterogeneity of parkers, and evolution of demand throughout the day. I show that the optimal price for parking is proportional to the rate of arrival of new parkers and is inversely related to the square of the occupancy rate, which is different from previously discussed pricing methods. I show that the primary purpose of pricing is to regulate departures, rather than arrivals, of parkers. I also find that asymmetric information about parkers’ characteristics does not prevent the parking authority from achieving the social optimum. A numerical example compares the optimal policy against the alternatives.  相似文献   

2.
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A parking utilization survey was undertaken with the main objective of analyzing and comparing the daily workday utilization patterns of two main park and ride stations within the Kuala Lumpur conurbation. This study also aimed to gauge the level of usage of the park and ride facilities. The findings showed that the overall utilization pattern of the facilities was very high with a utilization rate of between 80 and 95%. The stations, however, recorded a contrasting accumulation pattern. The study further revealed that most of the rail-based suburban park and ride users were long term parkers. The results of this study are comparable to results of similar studies in Seoul, Calgary, Tyne and Wear and others. Since parking availability is an important factor that has influence on the behavior of a park and ride user, more accurate information relating to the supply and demand of the park and ride facility will assist in planning new transport infrastructure.
Norlida Abdul HamidEmail:
  相似文献   

4.
Operators of parking guidance and information (PGI) systems often have difficulty in determining the best car park availability information to present to drivers in periods of high demand. This paper describes a behavioural model of parking choice incorporating drivers perceptions of waiting times at car parks based on PGI signs. This model was used to predict the influence of PGI signs on the overall performance of the traffic system.Relationships were developed for estimating the arrival rates at car parks based on trip patterns, driver characteristics, car park attributes as well as the car park availability information displayed on PGI signs. Drivers' perceptions of waiting times at car parks were assumed to be influenced by the PGI signs for observers of the signs and actual car park utilisation levels for non-observers. The model assumes that the choice of car park does not change after entering the city centre, even if conditions observed are different from those initially perceived.A mathematical programme was formulated to determine the optimal display PGI sign configuration to minimise queue lengths and vehicle kilometres of travel (VKT). The model was limited to off-street parking choices and illegal parking was not incorporated. A simple genetic algorithm was used to identify solutions that significantly reduced queue lengths and VKT compared with existing practices.These procedures were applied to an existing PGI system operating in Tama New Town near Tokyo. Significant reductions in queue lengths and VKT were predicted using the optimisation model. This would reduce traffic congestion and lead to various environmental benefits.  相似文献   

5.
Transit systems are subject to congestion that influences system performance and level of service. The evaluation of measures to relieve congestion requires models that can capture their network effects and passengers' adaptation. In particular, on‐board congestion leads to an increase of crowding discomfort and denied boarding and a decrease in service reliability. This study performs a systematic comparison of alternative approaches to modelling on‐board congestion in transit networks. In particular, the congestion‐related functionalities of a schedule‐based model and an agent‐based transit assignment model are investigated, by comparing VISUM and BusMezzo, respectively. The theoretical background, modelling principles and implementation details of the alternative models are examined and demonstrated by testing various operational scenarios for an example network. The results suggest that differences in modelling passenger arrival process, choice‐set generation and route choice model yield systematically different passenger loads. The schedule‐based model is insensitive to a uniform increase in demand or decrease in capacity when caused by either vehicle capacity or service frequency reduction. In contrast, nominal travel times increase in the agent‐based model as demand increases or capacity decreases. The marginal increase in travel time increases as the network becomes more saturated. Whilst none of the existing models capture the full range of congestion effects and related behavioural responses, existing models can support different planning decisions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
We examine car driver’s behaviour when choosing a parking place; the alternatives available are free on-street parking, paid on-street parking and parking in an underground multi-storey car park. A mixed logit model, allowing for correlation between random taste parameters and estimated using stated choice data, is used to infer values of time, both when looking for a parking space and for accessing the final destination. Apart from the cost of parking, we found that vehicle age was a key variable when choosing where to park in Spain. We also found that the perception of the parking charge was fairly heterogeneous, depending both on the drivers’ income levels and whether or not they were local residents. Our results can be generalised for personalised policy making related with parking demand management.  相似文献   

7.
Park and ride facilities on light rail transit systems   总被引:2,自引:0,他引:2  
There is now considerable interest in exploring the idea of strategic park and ride as a means of promoting the use of rail transit and encouraging a transfer of commuters from car to public transport. This is especially evident in North America, where extensive park and ride facilities have been installed on a number of light and heavy urban rail systems. There is a general consensus about the most suitable types of location for facilities, but less agreement on the development of a reliable method of forecasting demand and also on the required size of sites. Experience in practice indicates that although park and ride is attractive to commuters, schemes do not generally result in lasting reductions in highway congestion, due to rising car ownership and use and the phenomenon of generated traffic.Abbreviations Centro West Midlands Passenger Transport Executive - K&R Kiss and ride - LRT Light Rail Transit - PT Public Transport - RT Rapid Transit - TRRL Transport & Road Research Laboratory, UK  相似文献   

8.
Cross‐border passengers from Hong Kong to Shenzhen by the east Kowloon‐Canton Railway (KCR) through the Lo Wu customs exceed nearly 200 thousand on a special day such as a day during the Chinese Spring Festival. Such heavy passenger demand often exceeds the processing and holding capacity of the Lo Wu customs for many hours a day. Thus, passengers must be metered off at all entrance stations along the KCR line through ticket rationing to restrain the number of passengers waiting at Lo Wu within its safe holding capacity. This paper proposes an optimal control strategy and model to deal with this passenger crowding and control problem. Because the maximum passenger checkout rate at Lo Wu is fixed, total passenger waiting time is not affected by the control strategy for given time‐dependent arriving rates at each station. An equity‐based control strategy is thus proposed to equalize the waiting times of passengers arriving at all stations at the same time. This equity is achieved through optimal allocation of the total quota of tickets to all entrance stations for each train service. The total ticket quota for each train service is determined such that the capacity constraint of the passenger queue at Lo Wu is satisfied. The control problem is formulated as a successive linear programming problem and demonstrated for the KCR system with partially simulated data.  相似文献   

9.
This paper reviews the empirical evidence relating to the impact of parking policy measures on the demand for parking and for travel. Disaggregate modal choice models, disaggregate parking location models and site‐specific studies of parking behaviour are examined. With regard to modal choice models, it is concluded that few studies deal adequately with parking factors, but that there is some support for the view that parking policy measures are a relatively important influence on modal choice. When parking location models are examined parking policy variables are shown to have a substantial impact on choice of parking location. With regard to site‐specific studies, the paper concludes that there is a great variation in the parking price elasticities quoted, which reflects partly the methodological problems associated with such studies. Suggestions to improve model specification are made.  相似文献   

10.
This paper presents a probabilistic delay model for signalized intersections with right‐turn channelization lanes considering the possibility of blockage. Right‐turn channelization is used to improve the capacity and to reduce delay at busy intersections with a lot of right‐turns. However, under heavy traffic conditions the through vehicles will likely block the channelization entrance that accrues delay to right‐turn vehicles. If the right‐turn channelization gets blocked frequently, its advantage in reducing the intersection delay is neglected and as a result the channelization lane becomes inefficient and redundant. The Highway Capacity Manual (HCM) neglects the blockage effect, which may be a reason for low efficiency during peak hours. More importantly, using HCM or other standard traffic control methods without considering the blockage effects would lead to underestimation of the delay. To overcome this issue, the authors proposed delay models by taking into account both deterministic and random aspects of vehicles arrival patterns at signalized intersections. The proposed delay model was validated through VISSIM, a microscopic simulation model. The results showed that the proposed model is very precise and accurately estimates the delay. In addition, it was found that the length of short‐lane section and proportion of right‐turn and through traffic significantly influence the approach delay. For operational purposes, the authors provided a step‐by‐step delay calculation process and presented approach delay estimates for different sets of traffic volumes, signal settings, and short‐lane section lengths. The delay estimates would be useful in evaluating adequacy of the current lengths, identifying the options of extending the short‐lane section length, or changing signal timing to reduce the likelihood of blockage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Freeway‐to‐freeway connector metering is a cost‐effective and proven freeway management strategy for relieving recurrent congestion. However, one of the critical challenges in design and operation of freeway‐to‐freeway connector metering is the lack of up‐to‐date queue storage length design guidance. In this study, it was found that ramp queue is dynamically related to the metering rate, on‐ramp demand, and traffic flow arrival pattern. Hence, simply using an average demand cannot provide accurate queue length estimation and is also not suitable for queue storage design where the maximum or a percentile queue length is generally used. A mesoscopic queue length simulation model was developed based on the input–output method for estimating queue lengths under various demand‐to‐capacity ratio scenarios. Simulation results indicate that for under‐saturated situations, the ramp queue may exist temporally due to the random short‐term surge of traffic arrivals, and the exponential function could best capture the relationship between queue length and demand‐to‐capacity ratio. For over‐saturated situations, the ramp queue tends to prolong linearly with the demand‐to‐capacity ratio. Based on the simulation, it was recommended that queue storage length be designed as 4.3% of on‐ramp demand when demand is lower than 1200 vph or 2.3% when demand is between 1200 and 2400 vph. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In the advent of Advanced Traveler Information Systems (ATIS), the total wait time of passengers for buses may be reduced by disseminating real‐time bus arrival times for the next or series of buses to pre‐trip passengers through various media (e.g., internet, mobile phones, and personal digital assistants). A probabilistic model is desirable and developed in this study, while realistic distributions of bus and passenger arrivals are considered. The disseminated bus arrival time is optimized by minimizing the total wait time incurred by pre‐trip passengers, and its impact to the total wait time under both late and early bus arrival conditions is studied. Relations between the optimal disseminated bus arrival time and major model parameters, such as the mean and standard deviation of arrival times for buses and pre‐trip passengers, are investigated. Analytical results are presented based on Normal and Lognormal distributions of bus arrivals and Gumbel distribution of pre‐trip passenger arrivals at a designated stop. The developed methodology can be practically applied to any arrival distributions of buses and passengers.  相似文献   

13.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In studies of parking policy, the role of parking pricing has been addressed. Most researches have focused on the determination of a proper price for city parking spaces that are open to the public and it is now evident that price is used by authorities as a tool to manage transport demand. However, studies of parking pricing that pertain to privately-owned parking resources are few and in particular, the problem of setting a proper price for physical market parking has rarely been studied, such as a mall’s ‘dual-pricing portfolio’ decision for the simultaneous determination of a parking fee and the consumer spending required for free parking (i.e., the ‘threshold’). This is a common problem for most malls, but the different agents involved (e.g., the visitors, the mall, the marketplace and the parking lot departments) usually have diverse goals, so the decision must take account of a multiplicity of criteria and subtle relationships. In order to systematically support this type of inter-departmental decision process, a decision model that includes an analytical decision-aid process and the relevant programming models is established. A numerical example verifies the proposed model by taking the data for a mall in Taiwan and the implications, in terms of management, are given. This systematic computational model can be generalized to any type of commercial market that requires a (new) parking pricing policy.  相似文献   

15.
With increasing auto demands, efficient parking management is by no means less important than road traffic congestion control. This is due to shortages of parking spaces within the limited land areas of the city centers in many metropolises. The parking problem becomes an integrated part of traffic planning and management. On the other hand, it is a fact that many private parking spots are available during daytime in nearby residential compound because those residents drive their cars out to work. These temporarily vacant parking lots can be efficiently utilized to meet the parking demand of other drivers who are working at nearby locations or drivers who come for shopping or other activities. This paper proposes a framework and a simple model for embracing shared use of residential parking spaces between residents and public users. The proposed shared use is a winning strategy because it maximizes the use of private resources to benefit the community as a whole. It also creates a new business model enabled by the fast-growing mobile apps in our daily lives.  相似文献   

16.
To assess parking pricing policies and parking information and reservation systems, it is essential to understand how drivers choose their parking location. A key aspect is how drivers’ behave towards uncertainties towards associated search times and finding a vacant parking spot. This study presents the results from a stated preference experiment on the choice behaviour of drivers, in light of these uncertainties. The attribute set was selected based on a literature review, and appended with the probabilities of finding a vacant parking spot upon arrival and after 8 min (and initially also after 4 min, but later dropped to reduce the survey complexity). Efficient Designs were used to create the survey design, where two rounds of pilot studies were conducted to estimate prior coefficients. Data was successfully collected from 397 respondents. Various random utility maximisation (RUM) choice models were estimated, including multinomial logit, nested logit, and mixed logit, as well as models accounting for panel effects. These model analyses show how drivers appear to accept spending time on searching for a vacant parking spot, where parking availability after 8 min ranks second most important factor in determining drivers’ parking decisions, whilst parking availability upon arrival ranks fourth. Furthermore, the inclusion of heterogeneity in preferences and inter-driver differences is found to increase the predictive power of the parking location choice model. The study concludes with an outlook of how these insights into drivers’ parking behaviour can be incorporated into traffic assignment models and used to support parking systems.  相似文献   

17.
In this paper, we define the online localized resource allocation problem, especially relevant for modeling transportation applications. The problem modeling takes into account simultaneously the geographical location of consumers and resources together with their online nondeterministic appearance. We use urban parking management as an illustration of this problem. In fact, urban parking management is an online localized resource allocation problem, where the question is how to find an efficient allocation of parking spots to drivers, while they all have dynamic geographical positions and appear nondeterministically. We define this problem and propose a multiagent system to solve it. The objective of the system is to decrease, for private vehicles drivers, the parking spots search time. The drivers are organized in communities and share information about spots availability. We have defined two cooperative models and compared them: a fully cooperative model, where agents share all the available information, and a “coopetitive” model, where drivers do not share information about the spot that they have chosen. Results show the superiority of the first model.  相似文献   

18.
Abstract

This article documents the authors' experience with the modeling, simulation, and analysis of a university transportation system, using the TRansportation ANalysis and SIMulation System (TRANSIMS). The processes of data preparation and network coding are described, followed by the algorithm developed to estimate the dynamic 24-hour demand, which includes a procedure for estimating the ‘desirability’ of the different parking lots from readily available data. The dynamic demand estimation algorithm is validated by comparing estimated and observed parking lot occupancies, where it is shown that the algorithm is capable of replicating observed results. Finally, an example is included to demonstrate how the developed model can be used in campus transportation planning. Besides serving as a first case study for using TRANSIMS to model a university campus, the study's contributions include the development of a procedure for parking lot desirability ranking and a practical procedure for estimating dynamic demand on university campuses.  相似文献   

19.
ABSTRACT

This paper explores car drivers’ cruising behaviour and location choice for curb parking in areas with insufficient parking space based on a survey of car drivers in Beijing, China. Preliminary analysis of the data show that car drivers’ cruising behaviour is closely related to their parking duration and parking location. A multinomial probit (MNP) model is used to analyse cruising behaviour and the results show that the closer to the destination car drivers are, the more likely they choose to park on the curb. The adjacent locations are the basis of car drivers’ sequential parking decisions at different locations. The research results provide a better understanding of cruising behaviour for parking and recommendations for reducing cruising for parking. The provision of parking information can help regulate the parking demand distribution.  相似文献   

20.
Supporting efficient connections by synchronizing vehicle arrival time and passengers' walking time at a transfer hub may significantly improve service quality, stimulate demand, and increase productivity. However, vehicle travel times and walking times in urban settings often varies spatially and temporally due to a variety of factors. Nevertheless, the reservation of slack time and/or the justification of vehicle arrival time at the hub may substantially increase the success of transfer coordination. To this end, this paper develops a model that considers probabilistic vehicle arrivals and passengers walking speeds so that the slack time and the scheduled bus arrival time can be optimized by minimizing the total system cost. A case study is conducted in which the developed model is applied to optimize the coordination of multiple bus routes connecting at a transfer station in Xi'an, China. The relationship between decision variables and model parameters, including the mean and the standard deviation of walking time, is explored. It was found that the joint impact of probabilistic vehicle arrivals and passengers' walking time significantly affects the efficiency of coordinated transfer. The established methodology can essentially be applied to any distribution of bus arrival and passenger walking time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号