首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
轻型铁路货运车辆研制与运维应该针对难点问题来形成核心技术,跨越既有三大干线/新建有砟线路提速至160~220 km/h,兼顾提升货物集散能力,以期获得可观的中长途运输收益.以摇台和单牵引杆装置来实现牵引杆内置设计,快捷货车转向架由有摇枕演变为无摇枕转向架.以二系橡胶堆取代空簧悬挂,刚柔耦合仿真分析表明:目前技术条件尚不成熟,会形成了转向架对车体接口的非线性影响,并导致单牵引杆对纵向和横向刚度非线性影响,进而造成了晃车现象及其对磨耗振动的负面影响.假若改用日系空簧悬挂,积极分享快铁经济运用的技术成果,且构成了无摇枕转向架理想配置,轻型铁路货运车辆则以长交路跨线运营来提高移动装备的利用率,进而降低其折旧率.  相似文献   

2.
轻型铁路货运车辆研制与运维应该针对难点问题来形成核心技术,跨越既有三大干线/新建有砟线路提速至160~220 km/h,兼顾提升货物集散能力,以期获得可观的中长途运输收益.以摇台和单牵引杆装置来实现牵引杆内置设计,快捷货车转向架由有摇枕演变为无摇枕转向架.以二系橡胶堆取代空簧悬挂,刚柔耦合仿真分析表明:目前技术条件尚不成熟,会形成了转向架对车体接口的非线性影响,并导致单牵引杆对纵向和横向刚度非线性影响,进而造成了晃车现象及其对磨耗振动的负面影响.假若改用日系空簧悬挂,积极分享快铁经济运用的技术成果,且构成了无摇枕转向架理想配置,轻型铁路货运车辆则以长交路跨线运营来提高移动装备的利用率,进而降低其折旧率.  相似文献   

3.
利用HyperWorks/OptiStruct软件,采用密度法在应力约束条件下对铁路货车转向架摇枕进行结构拓扑优化,以拓扑优化得到的密度云图作为参考完成新模型的构建,并验证优化方案的可行性,在满足各种计算载荷工况静强度、刚度要求的基础上,摇枕质量减轻8.6%.为进一步对整车及零部件应用结构拓扑优化设计提供参考.  相似文献   

4.
动载系数对160 km/h货车转向架焊接件疲劳损伤的影响   总被引:1,自引:1,他引:0  
为了验证160 km/h货车转向架焊接部件的疲劳强度,依据UIC510-3标准规定的疲劳试验载荷确定方法和IIW提供的焊接接头疲劳强度S-N曲线,应用结构有限元技术及Palmgren-Miner线性累积损伤准则,对焊接构架及摇枕主结构危险焊缝接头进行了疲劳损伤数值仿真分析.结果表明:侧滚动载系数变化对疲劳损伤影响较小,浮沉动载系数变化对疲劳损伤影响显著.在对焊接构架和摇枕进行疲劳试验验证时,侧滚动载系数可直接取标准值0.22,浮沉动载系数应比标准值0.30适当增大,可初步取为0.33.  相似文献   

5.
建立了250 km/h高速综合检测车车体结构,包括车底BTM吊装座的有限元模型,利用轨道车辆随机振动及应力高效算法程序,采用德国高速低干扰谱作为激励载荷,进行整车包括BTM吊装座随机应力分析.随着速度的增加,车体最大值点的应力标准差也随之增加,最大值为0.545 2 MPa,出现在1Hz处、7 Hz处也出现第二峰值,车下吊装座BTM的应力标准差也随之增大最大值7.419 1 MPa变化达35.9%.  相似文献   

6.
基于耦合动力学理论,利用有限元方法建立了车辆-轨道耦合系统振动分析模型,输入不同截止波长的不平顺数据进行动力仿真计算,以确定轨道不平顺管理波长范围.高低不平顺主要影响车体的沉浮和点头运动,引起车体垂向加速度增大;轨向不平顺主要影响车体的侧滚和摇头,引起车体横向振动加速度增大.长波不平顺的影响主要体现在车体振动上,因此本文选定车体加速度作为确定不利波长的判定指标,对提速线路200km/h和250km/h速度下轨道不平顺波长管理的范围进行了探讨,并提出了提速线路轨道不平顺波长管理的建议.  相似文献   

7.
基于摩擦缓冲器动力学理论、车钩双向接触方法与车体摇枕载荷传递模型, 构建了车辆冲击三维动力学模型, 仿真了不同冲击速度与不同空重车状态的货车冲击, 分析了车辆冲击动态特性及其对摇枕横向载荷的影响, 并通过试验对仿真结果进行了验证。分析结果表明: 利用车辆冲击三维动力学模型顺利实现了车辆冲击时缓冲器动态特性、车钩连挂动态特性与摇枕横向载荷的仿真计算, 并获得了与冲击试验较为吻合的结果, 其中车钩力误差基本小于10%, 摇枕横向载荷误差基本小于25%;空车质量较小, 在冲击作用下车钩和从板姿态变化大, 因此, 重车冲击空车时车钩力动态曲线振荡特性较重车冲击重车更为明显, 甚至局部出现尖峰; 相对于车钩接触模型与力学传递特性, 摩擦缓冲器模型存在黏滞特性, 导致重车冲击重车和重车冲击空车下车钩接触力较缓冲器阻抗力分别小24%和31%;车钩力和摇枕横向载荷随着冲击速度的提高而逐渐增大, 且时间变化历程与最大峰值出现的时间基本一致, 相同速度下重车冲击重车的车钩力要大于重车冲击空车的车钩力, 在3、5、8km·h-1速度下分别大57%、25%和37%, 而产生的摇枕横向载荷刚好相反, 3种速度下分别小42%、53%和47%, 因此, 重车与空车调车连挂过程更容易造成转向架摇枕横向载荷过大, 应严格控制其连挂速度。   相似文献   

8.
针对目前提速使用的设计时速为100 km/h的转8AG型和转8G型货车转向架侧架,采用有限元分析方法进行静强度计算.分析结果表明,转8AG型和转8G型货车转向架侧架整体上满足强度要求,应力最大部位发生在承台拐角、轴箱拐角和三角透视孔部位,这些部位在车辆实际运行中应给予重点关注.对转8AG型侧架进行了静强度测试,测试结果与计算结果基本一致.同时对转8AG型和转8G型侧架进行了比较分析,结果表明,转8G型侧架的强度指标明显优于转8AG型侧架.  相似文献   

9.
在高铁运用与理论实践基础上,提出了抗蛇行频谱特征匹配原则,并作为超高速转向架技术方案研究的基本指导准则之一.根据基于抗蛇行频带吸能机制的稳定新理论,以ICE3系列作为基准转向架,通过必要的参数优配,制订了超高速转向架优配方案.动态仿真分析表明:400 km/h超高速运用存在3大技术难题:即抗蛇行减振器性能可靠性、车体横向振动响应频带增宽和电机横摆自激振动.尽管这3大技术难题在技术与理论上可以得到解决,但是超高速运用已经丧失了其商业价值.冲击600 km/h打破法国574.8 km/h世界纪录,不仅具有十分重要的现实意义,而且也具备技术可行性.但是时速500 km/h以上,将出现车轮纵向蠕滑不稳定问题.根据威金斯理论,这是高速轮轨速度极限的重要技术标志之一.  相似文献   

10.
为了抵御更加强劲的流固耦合效应,高速转向架改用抗侧滚扭杆上置且固定简支安装方式,其对有害磨耗踏面形成机理会产生不容忽视的次要因素影响.安全稳定裕度不充裕是有害磨耗踏面形成的根本原因,实际滚径差RRD过零点不连续性使轮对重力刚度部分丧失了恢复力反馈响应.以抗侧滚扭杆上置为例,杆系计算分析结果表明:固定/浮动简支对车体侧滚刚度贡献分别增强至14.3/10.8 MN·m/(°).高速晃车会因此造成踏面中央集中磨耗累计并使钢轨走行光带拓宽,最终演变成为凹坑磨耗.因而自适应高速转向架应该根据抗蛇行宽频带吸能机制,轮轨匹配条件遵循统一规范原则,以十分充裕的安全稳定裕度来确保轮对自稳定性和回转阻力矩有效性,从而让抗侧滚扭杆装置发挥其正常功能.  相似文献   

11.
与快铁运用模式不同,高铁运用模式更加强调安全冗余.因而降低蛇行振荡参振质量应当作为高速转向架设计的基本原则.横向振动耦合机制是高铁车辆振动行为的基本规律,其形成具有以下2个主要因素:即轮对(强)迫导向定位形式和抗蛇行高频阻抗作用,两者导致车体摇头大阻尼特征,造成车体对后位转向架接口的横向高频扰动增强,进而构成了横向振动传递媒介.同时这2个因素也是参振质量降低的必要技术条件.降低纵向定位刚度或最小等效锥度,将违背高速转向架的降低参振质量基本原则.因而在350 km/h标准动车组及其技改中,必须实施抗蛇行宽频带吸能机制原始技术创新.  相似文献   

12.
为获得抗侧滚扭杆在动车组运行时所受载荷的变化情况,结合陀螺仪和速度信号,研究了抗侧滚扭杆载荷随列车运行速度、曲线半径和曲线超高的变化规律;统计了不同速度级下抗侧滚扭杆载荷最值,并编制测试载荷谱、趋势载荷谱和动态载荷谱,计算趋势载荷与动态载荷在整个测试载荷中贡献的损伤比. 研究结果表明:直线工况下,抗侧滚扭杆动态载荷幅值随列车运行速度的增加而增加,当运行速度由250 km/h增大到350 km/h时,抗侧滚扭杆载荷幅值最大值增大了30%;在一定的过超高条件下,抗侧滚扭杆趋势载荷幅值随曲线半径减小而减小,240 km/h运行速度下最大载荷幅值由6.61 kN减小为3.54 kN;在曲线半径一定的条件下,抗侧滚扭杆趋势载荷幅值随曲线超高的增大而增大,240 km/h运行速度下最大载荷幅值由3.36 kN增大为5.80 kN.   相似文献   

13.
牵引装置用来实现车体和转向架之间的纵向作用力的传递,其强度可靠性对转向架的安全运行有着重要的影响。本文根据UIC615-1~BENl3749或UIC615—4制定计算载荷和计算载荷工况,用有限元方法对B型地铁转向架牵引装置的主要承载结构的强度进行分析。分析结果表明,该结构的牵引装置的结构疲劳强度可以满足转向架运行要求。B型转向架轴箱体结构强度分析根据UIC510-5、ENl3979-1、ENl2082、UIC615-1~DENl3749或UIC615-4或UIC515-4制定计算载荷和计算载荷工况.用有限元方法进行强度分析。轴箱体结构制造材料ZG230-450的许用应力参数,根据GBl1352和机械工程材料性能数据手册确定。轴箱体在确定载荷工况的计算载荷作用下,疲劳强度均满足设计要求。在疲劳强度载荷工况下,轴箱体的应力幅值均小于其对应许用应力幅,其最小安全系数为1.22出现在箱体下部筋板板边的圆弧区域。  相似文献   

14.
全面分析了200km/h高速客车车体的结构特点,建立了结构分析计算模型.通过对垂向载荷工况、纵向拉伸载荷工况、纵向压缩载荷工况、气动载荷工况和运用状态垂向载荷工况的分析计算,结果表明:该车钢结构变形协调,强度薄弱部位主要表现为局部应力集中.解决应力集中问题不应加大构件断面尺寸,而应采用降低应力集中的结构措施或局部补强.  相似文献   

15.
本文应用 SAP-5结构分析程序,以边界元的位移作为载荷条件,将窗角应力梯度大的部位进行单元细划,建立起铁路客车车体钢结构侧墙窗间壁及两侧窗角部位的计算模型。最后,通过垂直载荷工况和纵向压缩工况下的两组已知位移值,分别相应地进行了局部二次细算,并求出垂直和纵向载荷同时作用的最不利工况组合下的应力值。  相似文献   

16.
为了更好地实现铁路货运的重载快捷发展目标,以双层集装箱车辆作为应用研究对象,利用刚柔耦合仿真分析手段进行了3E轴构架转向架100~135 km/h动力学性能分析.6轴双层集装箱车辆刚柔耦合分析表明:空载承载鞍滑动现象和重载中轴轮对稳定性将是其高速运营的主要性能问题.因而,确保空载轮对定位刚度、确保重载中轴轮对轮轨关系稳定和降低车体结构耦合振动响应水平应作为3轴构架转向架的通用动力学要求.为此,提出了如下三项技术对策:①1、3轴承载鞍应以45°倒面作为承载摩擦面,满足摩擦系数μe≥0.42,而中轴小承载鞍则以磨耗板进行减磨处理μ0.2;②以中轴轮对车轮轮缘减薄9 mm的LM修正踏面优化来提高轮轨匹配的等效锥度控制中轴轮对横移,进而降低转向架蛇行运动程度;③中轴轴箱增设斜楔摩擦减振以降低落下孔车体中部结构振动耦合响应.与原设计对比,该技术对策可以使车辆动态性能得到改善.  相似文献   

17.
为了更好地实现铁路货运的重载快捷发展目标,以双层集装箱车辆作为应用研究对象,利用刚柔耦合仿真分析手段进行了3E轴构架转向架100~135 km/h动力学性能分析.6轴双层集装箱车辆刚柔耦合分析表明:空载承载鞍滑动现象和重载中轴轮对稳定性将是其高速运营的主要性能问题.因而,确保空载轮对定位刚度、确保重载中轴轮对轮轨关系稳定和降低车体结构耦合振动响应水平应作为3轴构架转向架的通用动力学要求.为此,提出了如下三项技术对策:①1、3轴承载鞍应以45°倒面作为承载摩擦面,满足摩擦系数μe≥0.42,而中轴小承载鞍则以磨耗板进行减磨处理μ〈0.2;②以中轴轮对车轮轮缘减薄9 mm的LM修正踏面优化来提高轮轨匹配的等效锥度控制中轴轮对横移,进而降低转向架蛇行运动程度;③中轴轴箱增设斜楔摩擦减振以降低落下孔车体中部结构振动耦合响应.与原设计对比,该技术对策可以使车辆动态性能得到改善.  相似文献   

18.
采用热-弹塑性法和固有应变法计算了动车组铝合金车体对接接头的残余应力, 并进行了对比, 以验证采用固有应变法计算残余应力的合理性; 建立了车体的板壳有限元模型, 参照标准《铁路应用—铁路车辆车体的结构要求》 (EN 12663), 确定车体服役状态的疲劳载荷工况, 采用惯性释放法计算了车体有无残余应力的疲劳强度; 根据最大主应力原则, 将车体多轴应力转化为单轴应力, 得到焊缝和母材关注点的平均应力和应力幅值; 结合铝合金车体材料性能参数绘制了Goodman疲劳曲线, 计算了每个关注点的可靠性安全系数, 分析了残余应力对车体疲劳强度的影响。分析结果表明: 焊接残余应力对母材关注点影响不大, 其可靠性安全系数降幅小于5%;焊缝关注点的平均应力增加量可达25 MPa, 其可靠性安全系数降幅超过50%, 最大为54%, 使得车体容易疲劳失效; 残余应力对焊缝关注点最大主应力的方向有明显的改变。   相似文献   

19.
针对高速动车组焊接构架的结构特点,建立某型高速动车组转向架焊接构架有限元模型,基于TB/T 2368-2005标准对焊接构架进行静强度分析,遴选出相对薄弱部位,并基于动应力法对选取的薄弱部位进行动应力计算,结合材料的Goodman疲劳曲线,评估焊缝区和非焊缝区的疲劳强度.结果表明:超常载荷工况下,构架的最大应力出现在焊缝区,为296 MPa,13种模拟运营工况下,无缝区的最大应力为225 MPa,焊缝区的最大应力为195 MPa,均未超出结构材料的许用值. 6个考察部位中只有侧梁下盖板和转臂座连接处的应力幅略高于焊缝疲劳许用应力,其余各部位的动应力均符合设计要求.  相似文献   

20.
平地上高速列车的风致安全特性   总被引:6,自引:1,他引:5  
为研究高速列车在强侧风作用下安全行驶问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用该模型计算了不同风向角、不同风速和不同车速下作用于车体上的侧风气动载荷.根据高速列车整车试验规范,以脱轨系数、轮重减载率、轮轴横向力和轮轨垂向力为运行安全指标,分析了头车、中间车和尾车的运行安全性.研究表明:头车的安全性最差,且风向角为90°时,横风情况下最危险.随着车速的增大,最大安全风速急剧减小.当车速为200km/h时,最大安全风速为29.61 m/s;当车速为400 km/h时,最大安全风速为18.87m/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号