首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
高速列车盘形制动系统热机耦合特性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
为了研究热机耦合对高速列车制动系统动力学行为的影响,建立了高速列车制动系统三维瞬态热机耦合有限元模型,进行拖曳制动状态下热机耦合特性的计算与分析;采用ABAQUS/Explicit热-位移瞬态分析法,探讨列车制动过程中的温度分布特性和振动行为,并与忽略热机耦合状态的系统动力学行为进行对比分析. 研究结果表明:制动过程中闸片温度动态变化,且会形成局部高温区导致热斑形成;由于制动盘和闸片发生一定程度弹性翘曲变形,导致闸片温度周向分布和径向分布出现复杂的温度分布特性,在闸片的内外径处和进/出摩擦区域的温度分布差异显著;制动过程中闸片在法向和切向上的振荡程度逐渐减弱,但是总体变形量逐渐增大,位移形变量达到6 μm;热变形主要发生在闸片两侧,闸片在进摩擦区的变形量(35 μm)明显大于出摩擦区处(25 μm),而闸片的中部出现明显的"凹陷",即随着制动进行,闸片中部区域没有出现明显的热变形;在热机耦合状态下,制动系统振动先增大后降低,整体振动强度比忽略热机耦合时强;界面接触力的波动程度先增大后降低,总体呈上升趋势.   相似文献   

2.
为研究高速列车制动区段制动结构/轨道结构对轮对-轨道-制动系统摩擦自激振动的影响,首先,结合现场调研,建立CRH3高速列车轮对-轨道-制动系统有限元模型;然后,采用复特征值法研究考虑轮轨粘滑和制动滚滑作用下的轮对-轨道-制动系统的摩擦自激振动特性;进而探究制动结构中表面织构对整个系统摩擦自激振动特性的影响;最后,对轨道结构中扣件参数进行参数化分析,并采用最小二乘法和粒子群算法求得抑制钢轨波磨的扣件参数的最优解.研究结果表明:高速列车在制动区段时,轮轨粘滑和制动滚滑作用导致的轮对-轨道-制动系统摩擦自激振动的主要频率为526.75 Hz,与现场波磨特征频率接近,说明轮对-轨道-制动系统的摩擦自激振动可能是该区段钢轨波磨的主要诱因;采用具有表面织构的闸片或制动盘能有效抑制制动区段的钢轨波磨,其中沟槽型闸片的抑制效果最佳;当扣件的垂向刚度为65.5 MN/m,横向刚度为46.0 MN/m,垂向阻尼为84.0 kN·s/m和横向阻尼为23.5 kN·s/m时,可以抑制高速列车制动区段的钢轨波磨.  相似文献   

3.
铁路盘型制动噪声机理及其控制方法   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究铁路盘型制动噪声的发生规律及其影响因素,测量了列车运行过程中各种制动工况条件下盘型制动器的摩擦噪声,获得了列车盘形制动摩擦噪声的发生规律;基于模态耦合引起制动摩擦噪声的机理,使用试验测得的闸片和制动盘之间的摩擦系数,建立了由制动盘、闸片、闸片托、制动杠杆和销等组成的全尺寸盘型制动系统摩擦噪声有限元预测模型,研究了铁路盘型制动噪声的影响因素. 试验结果表明:盘型制动摩擦噪声的特征频率为256.78、3904.07 Hz和4320.38 Hz;在特定摩擦副的摩擦性能下,当制动缸推力为10.1 kN和12.3 kN时,盘型制动器最容易产生摩擦噪声,模型预测结果与实测摩擦噪声比较一致;制动闸片的弹性模量对盘型制动噪声有重要的影响,合理的闸片弹性模量有助于抑制制动摩擦噪声.   相似文献   

4.
为了提高高速动车组在低温潮湿气候条件下的运行安全性,模拟-15~20℃雨雪环境,试验研究了高速列车制动系统的摩擦磨损性能以及制动盘表面划伤、制动力衰退等现象产生的原因.研究结果表明:在高寒雨雪环境下,制动副摩擦因数随着制动压力增加而增大;外来硬质点对摩擦因数的影响与制动初速度有关,当制动初速度低于160 km/h时,摩擦因数随着制动初速度提高而增大,当制动初速度大于等于160 km/h时影响不明显;夹钳被冰雪所覆盖冻结,影响夹钳缓解复位,使制动盘和闸片间隙变小,制动盘与闸片易产生接触碰撞,夹在盘片之间外来硬质点不易排出,加剧制动盘表面划伤;采用每隔7 min进行间隙式1 min低压力连续制动,可以清除制动盘表面冰膜,并能防止整个夹钳被冰雪所覆盖而冻结.  相似文献   

5.
优化结构闸片对制动盘温度及热应力的影响   总被引:1,自引:0,他引:1  
为了研究列车制动产生摩擦热对制动盘的耐热疲劳性能的影响,分析了摩擦热流分布与闸片结构的关系,提出一种优化闸片摩擦块固定位置,达到改善制动盘摩擦热分布的方法,采用有限元软件ABAQUS对优化前后的闸片制动过程进行了数值模拟,结果表明:与闸片优化前相比,闸片优化后制动盘最高温度和热应力分别下降的17%和23%,沿制动盘径向分布更均匀.  相似文献   

6.
针对我国即将建造的时速大于200km/h的铁路线路,研制既安全又耐用的制动闸片已成为当务之急。为了在模拟车辆的工作条件下,对粉末冶金复合材料闸片的性能进行研究,研制了一台高速列车闸片材料试验机,该机操作简单、安全,性能可靠,可用于对闸片材料配方和工艺的筛选研究,为进一步进行1:1试验提供性能较佳的闸片材料。  相似文献   

7.
为了保障高速列车的安全可靠运行,文章以存在未知扰动和输入时滞的高速列车制动系统为被控对象,设计了新的高速列车制动系统模型参考自适应控制策略,实现了对给定速度曲线的渐近跟踪。首先,通过分析高速列车制动系统的原理和动态特性,建立了存在扰动和时滞的高速列车制动系统状态空间模型;其次,充分利用模型参考自适应控制善于处理系统不确定性和外界扰动的能力,结合状态预测,设计了状态反馈控制器,使其在存在未知扰动和输入时滞时仍能实现对给定速度曲线的渐近跟踪;最后基于CRH380AL型高速列车在济南—青岛段的数据开展仿真验证,仿真结果表明文章设计的高速列车制动控制系统具有理想的稳定和渐近跟踪特性,能克服未知参数和有界扰动的影响,具有良好的鲁棒性。  相似文献   

8.
高速动力车基础制动装置的设计思路   总被引:1,自引:0,他引:1  
基础制动装置是高速动力车不可缺少的重要组成部分。基础制动装置应保证在满足高速列车制动距离要求的前提下,尽量减轻重量,并根据不同的转向架结构形式采用不同的制动盘结构。制动时优先投入动力制动以减轻制动盘和制动闸片的热负荷及磨耗。  相似文献   

9.
运用Simpack建立了高速列车动力学模型,分析了高寒地区列车制动过程中的受力情况,设计了400 km/h高速列车紧急制动与最大常用制动减速度曲线,并进行了黏着校核。结果显示所设计的减速度曲线能满足400 km/h高速列车的制动需求。运用MATLAB/Simulink建立制动系统模型,通过仿真计算得到高寒地区干燥和冰雪条件下紧急制动距离和最大常用制动距离。  相似文献   

10.
高速列车轨道涡流制动的制动力分析与计算   总被引:5,自引:0,他引:5  
分析了涡流制动的原理,引入了“迎流的”有限地计算具有速度矢量项的有限元方程,根据电磁力的麦克斯韦定理计算了列车的制动力,结果表明:轨道涡流制动的制动力在列车低速区随列车速度的提高而增大,在列车高速区则随列车速度的提高而下降,在某一列车速度下,制动力达到最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号