首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 619 毫秒
1.
路面不平整引起的汽车动荷载计算分析   总被引:13,自引:1,他引:12  
笔者理论分析了汽车行驶在波浪形路面上时汽车对路面的动荷载作用,推导了汽车动荷载与路面波形的理论计算公式,实例计算了在给定汽车结构参数、行驶速度、波形路面的波长、振幅时的汽车动荷载。  相似文献   

2.
路面不平整引起的车辆动载计算方法   总被引:3,自引:0,他引:3  
为了分析不平整路面上行驶车辆的动载特性,研究了西宝高速公路平整度实测结果,用正弦曲线模拟路面表面,建立了考虑汽车侧倾因素和轮胎阻尼的四自由度车辆振动模型,利用模态理论和编程计算对车辆振动模型在不同路面波长、不同振幅、不同行车速度及左右车轮激励不同时的动载进行了分析和求解,给出了车辆在不平整路面上行驶时产生的动载计算方法。计算结果表明:波形路面上产生的动荷载沿路线纵向呈波形分布,在路面上行驶的车辆对路面可能产生很大的动荷载,最大动荷载系数可达到2.0以上。  相似文献   

3.
考虑汽车侧倾因素在路面不平引起汽车动荷问题中的影响,建立了4自由度车辆模型,并据此模型实例分析计算了在路面波幅一定的情况下,汽车在不同波长路面上以不同车速行驶时产生的车辆动荷载。  相似文献   

4.
不平整路面上的汽车动荷载   总被引:6,自引:0,他引:6  
考虑汽车侧倾因素在路面不平引起汽车动荷问题中的影响,建立了4自由度车辆模型,并据此模型实例分析计算了在路面波幅一定的情况下,汽车在不同波长路面上以不同车速行驶时产生的车辆动荷载.  相似文献   

5.
将汽车简化为弹簧阻尼模型,对行驶在道路上的车辆突然遇到路面不平整情况时,车路之间接触动荷载进行了求解,得到了车路动载与行驶速度、不平整波长等因素的关系.将得到的随时间和地点变化的车路动荷载,作为荷载边界条件加入道路结构数值计算模型,对路面各结构层的动荷载响应进行了求解分析.计算结果表明:在波长较短且速度较高时表面弯沉具有明显的波动规律;基层底部水平正应力主要与经过此点附近的荷载大小相关,与行车速度及荷载变化方式关系不大.  相似文献   

6.
应用ADAMS动力学仿真软件,建立了某三轴重型车辆的多自由度整车仿真模型,分析了车辆在不同路面工况下行驶和车辆以不同载重、不同速度行驶时,对路面的动荷载作用。研究结果表明:在车辆的行驶速度范围内,车辆对路面的动荷载随着车速的增加而增加;随着路面振幅的增加而增加;且在相同条件下,满载车辆较空载车辆对路面的动荷载要大很多。  相似文献   

7.
利用ADAMS/CAR建立了某型五轴半挂车(1+5+5)型的车辆模型,以及不同坡度、不同转弯半径的路面文件。仿真分析了车辆在弯坡路面高速下坡行驶的过程,说明了过程中动荷载变化的原因,统计分析了车辆在不同弯坡的路面上行驶产生的动荷载,找到了动荷载随着坡度、转弯半径的变化规律。可为路面设计和车辆设计时考虑动荷载的变化提供参考。  相似文献   

8.
利用ADAMS/CAR建立了某型五轴半挂车(1+5+5)型的车辆模型,以及不同坡度、不同转弯半径的路面文件。仿真分析了车辆在弯坡路面高速下坡行驶的过程,说明了过程中动荷载变化的原因,统计分析了车辆在不同弯坡的路面上行驶产生的动荷载,找到了动荷载随着坡度、转弯半径的变化规律。可为路面设计和车辆设计时考虑动荷载的变化提供参考。  相似文献   

9.
由于刚性路面减振效应低,随着车辆载重逐渐增加,水泥混凝凝土路面破损情况逐渐加重。因此,现以福田欧马双轴车为研究目标,通过ADAMS软件建立整车动力学模型,以不同错台高度、不同行驶车速、不同车身重量3个参数变量研究重载车辆在不同路面环境下,车辆动荷载变化情况。研究表明:错台路面对车辆动荷载影响显著,在相同错台高度下前轮的动荷载比后轮大,其前轮动荷载最大为静荷载的2.35倍;在同一错台高度下,随着车速的提高车辆动荷载增大;当路面错台十分严重时,路面不平度成为影响车辆动荷载大小的主要因素,车速成为次要因素;而当路面错台较小时,车速对车辆动荷载的变化起决定作用;载重对车辆动荷载有明显影响。载重越大,车辆动荷载越大,但车辆动荷载系数越小。  相似文献   

10.
以预应力锚索柱板墙为研究对象,通过在挡土墙所在位置的路基与墙背处布置应变式动土压力盒,对车辆在不同载重、不同车速和行驶在不同车道时的动态响应进行测试,并评估交通荷载对支挡结构的作用与影响。测试表明汽车荷载的增加是引起挡土墙破坏的重要原因,而汽车行驶速度对挡土墙动应力的影响较小。鉴于汽车在超车道上行驶时,对挡土墙的影响程度远小于在行车道上行驶时的影响,挡土墙的设计计算时,应主要考虑汽车荷载在行车道上的动荷载的作用。  相似文献   

11.
车辆与道路相互作用的研究不仅只考虑路面不平整度对车辆动载荷的影响,而且应考虑行驶工况对车辆动荷载的影响。针对车-路耦合作用的特点,运用ADAMS/Car动力学仿真软件,建立了重型卡车的多自由度仿真模型和3D弯坡路面模型,通过分析弯坡路面和平直路面下车辆对路面的动载荷作用。表明,弯坡路面的疲劳破坏程度比平直路面的大。  相似文献   

12.
为探求重载货车不同行车速度下沥青面层水平剪应力动态响应规律,结合半刚性基层路面特点,采用层状体系理论,建立一个ANSYS3-D有限元粘弹性路面结构模型。在施加非均布动荷载情况下进行了非线性求解计算。结果表明,沥青面层内的最大水平剪应力均随行车速度的增加呈先增大后减小的规律,行车速度在20km/h左右时,水平剪应力达到最大,对路面剪切破坏程度最严重.  相似文献   

13.
车辆与道路相互作用的研究不仅只考虑路面不平整度对车辆动载荷的影响,而且应考虑行驶工况对车辆动荷载的影响.针对车-路耦合作用的特点,运用ADAMS/Car动力学仿真软件,建立了重型卡车的多自由度仿真模型和3D弯坡路面模型,通过分析弯坡路面和平直路面下车辆对路面的动载荷作用.表明,弯坡路面的疲劳破坏程度比平直路面的大.  相似文献   

14.
基于ADAMS重型半挂车动荷载仿真分析   总被引:1,自引:1,他引:0  
利用ADAMS/Car仿真软件建立了某重型半挂车模型,以綦江—万盛高速公路路面实测平整度数据为基础,用正弦曲线模拟路面,对车辆各轴车轮及不同车速和载重时的动荷载进行了仿真分析,同时对车辆模型在假定不同路面振幅和波长下的动荷载也进行了研究,为分析车辆与路面之间的相互作用提供参考价值。  相似文献   

15.
分析了汽车制动过程前、后轮受力状况,建立了汽车制动距离与路面附着系数的数学模型。在冰雪路面和使用融雪剂路面上进行了制动试验,应用MATLAB软件仿真计算了汽车在不同制动初速度下的制动距离。试验结果表明:在冰雪路面上,当汽车制动初速度分别为10.8、24.4、31.4km.h-1时,制动距离分别为2.959、18.378、26.264m;在使用融雪剂路面上,当汽车制动初速度分别为11.0、22.9、31.0km.h-1时,制动距离分别为2.430、13.766、18.860m。使用融雪剂后,附着系数明显提高,测试制动距离减小了25%~28%,仿真计算制动距离减小了约30%,两者接近,因此,计算模型可靠。  相似文献   

16.
有限元分析纵坡路段路面结构动态力学响应   总被引:2,自引:0,他引:2  
采用静态力学分析纵坡路段路面结构,能够得出推移是由于层间剪应力增大引起的,但不能合理解释实际存在的车辙问题。采用ANSYS三维有限元瞬态计算方法,模拟路面结构受到的动态车辆荷载作用,并依据国外路面设计理论,分析路面结构各层层底拉应变、面层内最大压应变以及路表弯沉值、面层与基层间的剪应力。得出纵坡路段的行车速度慢是车辙形成的主要原因,层间剪切破坏的发生主要跟纵坡坡度大小有关的结论。  相似文献   

17.
足尺沥青混凝土路面加速加载动力响应   总被引:2,自引:0,他引:2  
采用足尺沥青混凝土路面加速加载试验设备,检测了移动车辆荷载下路面结构的动力响应,分析了面层底部的动应变和土基顶竖向压应力,研究了车辆轴重、行驶速度和轮胎胎压对路面结构动力响应的影响,分别建立了动力响应与轴重、车速的回归模型,在不同轴重、车速和胎压下对4种路面结构进行了试验。分析结果表明:在行车荷载作用下,面层底部应变响应呈拉压应变交变状态;在中等试验温度条件下,面层底部应变响应随轴重的增加而线性增加,土基顶竖向压应力呈单向应力状态,且随轴重增加而增大;车速显著影响面层底部应变响应,但对竖向压应力影响不大,仅影响应力的脉冲持续时间;随车速增加,应力脉冲时间缩短,面层底部应变响应减小;重载车辆在低速行车时对路面的破坏作用更严重,但胎压对面层底部应变和土基顶竖向压应力影响较小。  相似文献   

18.
沥青路面动态响应数值分析   总被引:3,自引:0,他引:3  
为了优化沥青路面结构设计,引入无反射边界,依据结构动力理论,利用有限元数值分析方法,对多层沥青路面在移动荷载作用下的动态响应进行了分析。发现沥青面层的拉应力和路表弯沉随着基层模量、层间摩擦系数、行车速度和面层材料阻尼的增大而减小,剪切应力随着轮胎接地压力和基层模量的增大而增大。分析结果表明:基层设计需要综合优化设计,简单增加基层模量和厚度都是不合适的;良好的层间接触状态以及使用较大阻尼的材料,有利于路面性能的改善;提高行车速度可以延长路面的使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号