首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 219 毫秒
1.
为研究在山区Y形河口影响下桥址区的桥梁风载特性,以山区峡谷大跨度悬索桥桥址区真实地形为工程背景,应用CFD(computational fluid dynamics)的方法,建立了桥址区复杂地形区域风场数值模型.通过36个工况的分组对比分析,探讨了山区Y形河口对主梁的平均风速、风攻角、风剖面以及风速放大系数在不同来流方向下的影响规律,并分析了河口处河道的导流与山体的绕流作用.研究结果表明:不同于普通深切峡谷地形风特性,在Y形河口影响下,桥址区附近的平均风速最大增幅达24 m/s,平均风攻角主要表现为负攻角,出现了最高达1.13的风速放大系数,且河道的导流及山体的绕流作用会导致主梁风速分布不均匀.   相似文献   

2.
为研究山区水电大坝蓄水后对库区桥位风场特性的影响,以某复杂深切峡谷大跨度悬索桥为工程背景,通过Gambit和ICEM分别构建了原始地形以及大坝蓄水后的地形数值模型,并应用软件FLUENT对两个模型进行了数值模拟,多工况对比分析了大坝蓄水对桥址区风速沿竖向和主梁跨向分布以及对主梁平均风速、风攻角和风向角的影响.研究结果表明:无蓄水时该桥址区风速有较明显的加速效应,风速放大系数高达1.14,但蓄水后明显降低;大坝蓄水后,大多数工况下主梁平均风速均有不同程度的降低,主梁的正攻角效应明显减弱,主梁平均风向角整体变化规律一致,风剖面形状在低海拔范围内有较大变化,而随着海拔增加二者逐渐趋于相同.   相似文献   

3.
结合某大跨悬索桥所在山区地形,研究了漏斗型峡谷这一特殊构造地形的桥址区平均风特性,为大跨度桥梁在漏斗型峡谷地区的抗风设计提供依据.首先,建立实际地形的数值模型,并利用Fluent软件对24个不同来流工况进行比较分析;然后,将整体模拟结果与实测结果进行对比,验证数值模拟的合理性;最后,通过模拟结果的对比分析,探讨漏斗型峡谷桥位对风速大小、风攻角、风向角在不同来流方向的影响规律,分析平均风速随攻角分布的特点以及不同位置处的竖向风剖面特性.研究结果表明:漏斗型峡谷桥址区存在明显峡谷风加速效应;漏斗型地形对桥址区来流的攻角和风向分别表现为弱扰乱性和高导向性,来流攻角和风向分别稳定集中在-5°~0°和25°~30°;峡谷中风速对攻角变化的敏感性更高.  相似文献   

4.
架设在深切峡谷中的大跨度桥梁,由于桥址区地形地貌复杂,桥面离开谷底较高,桥址区的风特性一般无法通过抗风规范直接确定. 为确定深切峡谷桥址区高空的风特性,利用大桥施工过程中的猫道,在大桥跨中位置处布置了一套三维超声风速仪,对桥址区高空中的风特性进行了现场实测,获得了7 899条有效的脉动风速时程,以此为基础对桥址区高空的风特性(平均风速、风向、风攻角、紊流度、紊流积分尺度、功率谱)进行了分析. 研究结果表明:深切峡谷桥址区高空风特性受地形的影响已经明显减弱,其风攻角均值趋于0,同时高空的紊流积分尺度更加接近平原地区,紊流积分尺度均值比规范推荐值要大.   相似文献   

5.
为研究山区地形对处于峡谷中桥梁风场特性的影响,以建设在某峡谷中的一座大跨度桥梁为研究背景,利用计算流体力学软件FLUENT,设计了数值模拟方法,对桥址处风场进行计算分析.在利用实验数据验证模拟方法可靠性的基础上,通过不同来流方向的计算结果,分析了山区地形对主梁上顺桥向和横桥向的风速、风攻角及桥位处的平均风剖面分布的影响,以及峡谷效应产生的风速放大系数.研究结果表明:桥位来流方向的高耸山体会影响该侧主梁上水平风速的分布,并在该侧产生向下的风攻角;峡谷内的风剖面下部会发生畸变;特定的来流方向会在跨中产生风速放大效应.   相似文献   

6.
为探讨高海拔高温差深切峡谷桥址区日常大风的成因,采用CAW600-RT型四要素自动气象站、手持风速仪及便携式温度计,对大渡河大桥桥址区风特性进行实测,分析了桥位处平均风速与温度、日照及地形地貌等的相关性.结果表明:大渡河大桥位于高海拔高温差深切峡谷内,桥址区几乎每天下午起风,平均风速常达10 m/s以上;根据成因,桥位处的大风可分为2类,一类受大尺度大气环流影响,另一类受小尺度范围内热力驱动而产生日常大风,并受局部地形及随时间变化的日照的影响;桥位处日常大风出现的频率较高,虽不控制桥梁的设计基准风速,但影响桥梁的耐久性和行车舒适性.   相似文献   

7.
深切峡谷区大跨度桥梁的复合风速标准   总被引:2,自引:0,他引:2  
为考虑复杂地形地貌区大跨度桥梁不同构件处风特性的差异,在对地区相关气象站历史实测风速资料进行统计分析的基础上,推算了地区基本风速.通过对地区气象站和桥位风速观测点同步实测风速资料相关性的分析,建立了桥址区风速与地区气象台站风速间的订正关系.基于桥址区地貌特征并结合CFD分析结果,确定了主梁及各桥塔的设计风速,提出了复合风速标准的概念.研究结果表明,与常规桥梁单一的风速标准不同,深切峡谷区大跨度桥梁宜采用考虑主梁及各桥塔风特性差异的复合风速标准.  相似文献   

8.
针对下穿高速铁路,上跨河流和工厂的山岭重丘复杂地形条件,采用大跨径曲线钢箱梁桥进行跨越,对主跨140 m的曲线连续钢箱梁进行了设计和计算,为山区交通、地形复杂条件下的城市道路连续钢箱梁桥设计提供参考。  相似文献   

9.
山区峡谷桥梁设计基准风速的确定方法   总被引:1,自引:0,他引:1  
为向山区桥梁设计提供重要参数,以某大跨度悬索桥为工程背景,在缺少桥址风速数据的情况下,利用桥位附近气象站资料,用气象学分析法计算出桥位处逐年最大风速;分别用极值Ⅰ型法和虚拟气象站法计算出桥位100年一遇最大风速;比较2种方法的计算结果,并偏安全地取较大值作为桥址基本风速;最后,通过地形修正,以得出桥梁设计基准风速.结果表明:气象学分析法比虚拟气象站法计算的桥梁设计基准风速小;在缺少桥位风速的情况下,宜采用虚拟气象站法计算出的桥梁设计基准风速.   相似文献   

10.
贵州思南岩头河大桥为非对称连续刚构,跨径布置为53m+128m+92m。该桥具有分跨不对称,墩高不对称,结构受力复杂,可参考的工程实例少,并能与桥址区峡谷环境相协调等特点。以该桥的设计为例对非对称连续刚构在山区地方公路中的应用做了概要介绍。  相似文献   

11.
为探讨桥塔上风传感器安装位置对测量结果的影响,以计算流体力学大型商用软件Fluent为平台,采用有限体积法对计算域进行离散,基于k-湍流模型研究了桥塔附近的风场特性.分析了不同来流风速、不同来流风向下桥塔附近风观测点的风速、风向变化规律,给出了相应的风速修正系数和风向角修正值.研究结果表明:桥塔对测量结果的影响较大,桥塔上风传感器的安装位置应经过优化确定.风传感器位于迎风侧时,风速比值在0.45~1.30之间波动;位于背风侧时,风速比值在0.05~1.25之间波动.风传感器较优的安装位置为离塔1.0倍特征尺寸以上,且与来流方向的夹角在(45.0~56.5)范围内.   相似文献   

12.
山区高速公路特大桥梁设计阶段造价控制分析   总被引:1,自引:0,他引:1  
吉茶高速公路是典型的山区高速公路,沿线地质、地形条件复杂,其关键控制性工程矮寨大桥是目前峡谷跨度世界第一的悬索桥,工程概算占总投资的18%。由此可见,山区高速公路特大桥梁的造价控制对控制整条高速公路的造价影响重大。  相似文献   

13.
为研究山区风环境下悬挑式人行桥梁抖振响应及风荷载,以某单悬臂观景廊桥为背景,通过风洞试验对结构的静力三分力系数以及不同风参数下的抖振响应进行了测量,并将结构横桥向最大等效风荷载规范计算值与试验值进行比较. 结果表明:山体地形对结构三分力系数及抖振响应影响较大,二者最大值均未出现在常规风向角;结构抖振响应随风速的增大而增大,受小幅风攻角的影响较小;横向抖振响应受一定程度紊流度变化的影响不敏感,但竖向及扭转响应整体随紊流度的增加呈明显增大趋势,在紊流度增大约40%的情况下二者均增大15%左右;竖向抖振响应随紊流积分尺度的增大(增幅约20%)而增大,增幅在9%左右,但积分尺度对横向抖振响应几乎无影响,对扭转响应的影响随风攻角的不同有较大差异,随着积分尺度的增大,3° 攻角下扭转响应增幅约为8%,0° 攻角其受积分尺度的变化影响较小;相比横桥向最大等效风荷载试验值,利用桥梁规范计算的结果偏于保守,静阵风系数的取值有待修正.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号