首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
梯形轨枕具有稳定性好、振动小的优点,并能减弱传递给轨道的动荷载,使得梯形轨枕在高速铁路、重载铁路、城市轨道交通中均有较好表现,但是其横向阻力一直未进行系统试验研究. 本文研究了不同砟肩宽度(200、300、400、500 mm)梯型轨枕道床横向阻力,分析了阻力构成,并与Ⅲc型轨枕对比. 结果表明,在砟肩宽度均为500 mm道床上,平肩式梯形轨枕与平肩式及砟肩堆高150 mm、Ⅲc型轨枕相比,阻力分别提升了约55%、14%,并且,平肩式道床砟肩宽度由200 mm增加至500 mm过程中,梯形轨枕道床横向阻力无明显增长,其横向阻力主要由3部分构成,其中轨枕底面与道床摩擦提供约34%,枕心部位提供约47%,轨枕端部提供约19%. 试验表明,采用梯形轨枕,可选用较小截面尺寸的道床,从而大幅节约建设用地及道砟用量.   相似文献   

2.
为揭示道床横向阻力变化特征,采用离散元法,建立了高速铁路有砟道床-轨枕三维模型,研究了道床边坡坡度、顶面宽度、道床厚度和砟肩堆高等道床断面尺寸对其横向阻力的影响,分析了枕底、枕侧和砟肩阻力及其分担的横向阻力比例.结果表明:坡度为 1:1.50~1:1.85时,横向阻力为10.315~16.475 kN,坡度为 1:1.65及更缓能满足横向阻力超过12 kN/枕的要求.顶面宽度为3.0~3.8 m时,横向阻力为10.205~15.715 kN,顶面宽度为3.4 m及以上能满足横向阻力超过12 kN/枕的要求.随边坡变缓或顶面宽度增大,砟肩道砟增多,砟肩阻力显著增大.道床厚度为200~400 mm时,横向阻力为9.156~15.684 kN;横向推动轨枕时,道床从上向下分层拖动;随道床厚度增大,枕底阻力明显增大,道床厚度为300 mm及以上能满足横向阻力超过12 kN/枕的要求.砟肩堆高为0~180 mm时,砟肩阻力为2.010~5.203 kN,横向阻力为9.526~15.257 kN,砟肩堆高对砟肩阻力影响很大,堆高120 mm及以上能满足横向阻力超过12 kN/枕的要求.   相似文献   

3.
为对标准Ⅲc型轨枕进行外形优化及揭示轨枕优化前后道床横向阻力特性,针对Ⅲc型轨枕特定部位增设混凝土加宽(加厚)块,形成3种框架式轨枕,结合道床横向阻力测试实验,分析对比不同道床断面形式下(砟肩宽度300 mm堆高0 m;砟肩宽度500 mm堆高0 m;砟肩宽度500 mm堆高150 m)各框架轨枕与标准Ⅲc型轨枕道床横向阻力数值.研究结果表明:在不同道床断面型式下,各型框架轨枕均能有效增大道床横向阻力,相较于标准Ⅲc型轨枕,A型框架轨枕(轨枕承轨台双翼缘型)可提升道床横向阻力37.8%~50.8%,B型框架轨枕(枕中截面十字型)可提升道床横向阻力25.5%~41.0%,C型框架轨枕(轨枕承轨台下底部加厚型)可提升道床横向阻力13.3%~23.0%.   相似文献   

4.
钢棒加强式轨枕道床的纵横向阻力试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
井国庆  王新雨  周强  姚力 《西南交通大学学报》2021,56(6):1192-1196, 1213
为了探究钢棒加强式轨枕的纵横向阻力机理、分担以及钢棒插入深度和砟肩宽度的影响规律,为川藏铁路长大坡道韧性和稳定性增强提供新方法,通过进行一系列纵横向阻力试验得到了钢棒加强式轨枕纵横向阻力的总体特性和分担情况;通过改变钢棒插入深度和砟肩宽度探究了两者对钢棒加强式轨枕纵横向阻力的影响规律. 结果表明:与普通轨枕相比,钢棒加强式轨枕的纵横向阻力都有提高,当砟肩宽度为500 mm,堆高为0,钢棒插入深度为400 mm时,钢棒加强式轨枕纵横向阻力比肩宽为500 mm、堆高为150 mm条件下普通轨枕分别高39.2%和53.7%,枕底部分横向阻力分担比普通轨枕提升8%,纵向阻力提升26%;钢棒插入深度对道床阻力影响较大,在砟肩宽度为500 mm、堆高为0 时,插入深度由100 mm变至400 mm,相较于普通轨枕肩宽为500 mm、堆高为150 mm的工况,纵向阻力增幅由5.1%变至39.2%,横向阻力增幅由6.1%变至53.7%;砟肩宽度变化时,纵向阻力变化较小,横向阻力变化较大.   相似文献   

5.
为揭示胶粘道床横向阻力的工作机理,在高速铁路胶粘道床路段进行了横向阻力现场试验.分析了胶粘道床横向阻力的变化特征;利用离散元软件PFC3D(particle flow code in 3 dimensions)建立了胶粘道床三维模型,对胶粘道床内部接触力、应力进行了统计分析.研究结果表明:用胶状态下胶粘道床横向阻力值是有砟道床规范值的4.6倍,横向阻力提升显著;胶粘道床在提升横向阻力的同时,轨枕-道砟接触点压力值最大为1.2 KN,平均值为112.48 N,道砟仍处于良好的受力状态;道床全断面粘结时应保证枕下26 cm范围道砟胶喷涂的充分和均匀,以确保道床粘结效果的发挥;胶粘道床不同位置对横向阻力的分担比相对于有砟道床变化明显,胶粘道床枕侧承担63%、枕底承担24%、砟肩承担13%.  相似文献   

6.
川藏铁路有砟道床断面尺寸受限,所处环境地震多发、日温差大且变化剧烈,这些情况容易导致横向阻力不足,对无缝线路稳定性和震区轨道韧性提出挑战. 为合理设计轨枕底部设有箭头型凹槽的摩擦型轨枕,并量化其提升无缝线路稳定性与韧性,采用道床横向阻力试验,测量摩擦型轨枕对道床横向阻力增幅情况;合理设计并优化了轨枕底部凹槽,制作了3种不同箭头型凹槽,除去凹槽排列方式不同外,箭头型凹槽面积、尺寸完全一致;并且验证砟肩宽度减小情况下摩擦型轨枕提供的横向阻力是否可以满足川藏铁路运维要求. 结果表明:各型摩擦型轨枕均可增大道床横向阻力,可最少提升横向阻力7%,最高提升21%;单向箭头型双向阻力存在较大阻力值差异,相比于普通轨枕顺向可增大7%,逆向可增大24%,因此在曲线地段铺设时候,应严格注意铺设方向;砟肩宽度由50 cm降低到30 cm,采用单向箭头型轨枕逆向仍然可达到Ⅲ型轨枕砟肩宽度50 cm横向阻力值.   相似文献   

7.
有砟铁路是超高速铁路的重要形式之一,在适用性、建造成本及养护维修方面具有独特的优势。然而,超高速铁路有砟道床面临严峻的飞砟问题,需要采取适当的应对措施。结合相关高速铁路项目,对飞砟机理进行了阐述,并从道床结构优化、聚氨酯固化道床、轨枕结构优化、道砟覆盖网四个方面总结了超高速铁路飞砟防治技术,从而为超高速铁路的飞砟防治、有砟道床结构选型及养护维修提供参考。  相似文献   

8.
为深入探索有砟道床阻力演变对桥上无缝线路力学行为的影响,针对路基地段与桥上道床纵、横向阻力开展试验研究.以一座铁路常用双线特大连续梁桥为例,获得了桥上线路阻力分布特征,并提出实际道床在服役过程中存在局部阻力退化现象.在此基础上,建立了可考虑道床阻力非均匀分布与退化效应的桥上无缝线路纵向力学行为分析模型,开展了道床阻力分布及退化对大跨桥上无缝线路力学行为的影响分析.研究结果表明:桥上道床纵向阻力区域分布差异显著,桥跨中部纵向阻力值最大,阻力值为31.8 k N/枕,梁缝附近道床纵向阻力相对较小,阻力值为21.7 k N/枕,阻力退化效应明显;桥上道床横向阻力分布同样表现出一定区域分布特征,但退化效应并不明显,桥跨中部与梁缝处阻力值分别为31.7、25.5 k N/枕;由于受到温度荷载作用下梁体伸缩、列车动荷载作用下桥梁产生振动变位和梁端转角的影响,散体道床始终处于拉伸压缩的动态变化过程中,道床阻力表现出明显的退化特性;考虑道床阻力退化效应时,温度荷载作用下的钢轨伸缩附加力、钢轨位移、梁轨相对位移值有一定衰减,当桥梁温度跨度为140 m时,钢轨纵向附加力最大值减小约11.7%,且衰减率随着温度跨度的增加近似呈线性增长,按现有规范计算方法得到的梁轨相互作用结果偏大.  相似文献   

9.
为从细观上研究捣固和吹砟的维护机理,建立了离散元道砟箱数值模型,并耦合多体动力学的捣固镐模型和计算流体力学的吹砟管模型,对捣固与吹砟的作业全过程进行可视化模拟,基于离散元耦合数值模拟,对比分析了2种道床维护方法对道床扰动及作业后轨枕沉降.结果表明:吹砟作业各阶段对道床的扰动和道砟平均接触力均小于捣固,且扰动主要集中在下插阶段,吹砟作业过程中道砟颗粒速度峰值和接触应力峰值仅为捣固的37.5%和38.9%;捣固后,轨枕底部区域密实度提高了约13.6%,轨枕间上部和下部区域密实度分别降低了约21.0%和提高了约4.8%;吹砟后,轨枕底部区域密实度提高了约6.5%,轨枕间上部和下部区域密实度几乎无变化;在轨枕底部吹入碎石,吹砟作业极大地改善了轨枕底的接触状态和应力扩散,轨枕与道砟颗粒接触数增加了约243%,荷载传递更均匀;1 000次循环加载后,吹砟作业后的轨枕沉降相较捣固和未维护工况分别减少了约18.1%和44.4%.  相似文献   

10.
为研究钢桁梁梁端横向伸缩对有砟轨道几何形位的影响规律,运用有限单元法,建立线-桥横向分析的计算模型,对在日温差作用下钢桁梁梁端相对路基伸缩时有砟轨道几何形位的变化及其影响因素进行分析。结果表明,钢桁梁相对路基发生横向伸缩后会使有砟轨道线路产生较大的横向位移和方向变化率,但对轨距影响不明显;梁端伸缩时,道床、扣件横向阻力对轨道横向位移的影响很小,且其增大到正常值之后,轨道方向变化率受其影响也很小;钢桁梁横向固定支座和线路中线间的距离是影响轨道几何形位变化的主要因素,当其控制在6.7 m以内时,轨道的最大横向位移小于2 mm,方向不平顺变化率小于1‰。  相似文献   

11.
无碴轨道动力学理论及应用   总被引:2,自引:0,他引:2  
根据车辆-轨道耦合动力学理论,建立了列车与路基上无碴轨道空间耦合动力学模型.模型中将钢轨视为弹性点支承基础上的Bernoulli-Euler梁,将轨道板及混凝土底座视为弹性基础上的弹性薄板.推导了路基上无碴轨道的运动方程.用上述模型及方程分析了遂渝线无碴轨道综合试验段路基上板式轨道及过渡段的动力学性能.结果表明,快速客车、重载以及普通货车通过路基上板式轨道时,轮轨垂向力、轮轨横向力、脱轨系数、轮重减载率、以及CA砂浆和路基面动应力等动力学指标均小于许用值.该无碴(板式和双块式)轨道与有碴轨道过渡段在客运列车作用下钢轨挠度变化率均小于许用值(0.300mm/m),在货物列车作用下略大于许用值.  相似文献   

12.
最近发生的强震表明,传统的延性结构在超过设计水准强震作用下会产生过大的残余变形而导致结构难以修复. 为保证结构在大变形阶段具有正刚性和较小残余变形,采用低黏结高强度的钢绞线用来代替混凝土柱中的纵向普通钢筋. 为了验证方法的有效性,以钢绞线的布置数量和混凝土的约束方式作为试验变量,对5根缩尺比例为1/3、横截面为250 mm × 250 mm、净高为1 000 mm、剪跨比为2.0和轴压比为0.25的高强混凝土方柱进行拟静力试验. 试验结果表明:低黏高强的钢绞线作为柱纵筋可使混凝土柱的水平承载力在层间位移角达3.5%之前持续保持上升趋势,同时可以有效减少柱的残余变形,并使残余层间位移角控制在相应峰值层间位移角的1/5以下;碳纤维布外包混凝土柱可防止保护层混凝土剥落,进一步减小柱在经历大变形后的残余变形.   相似文献   

13.
加筋土挡墙墙背土压力分布规律研究   总被引:1,自引:0,他引:1  
综合考虑了拉筋垂直层间距与拉筋的抗拉强度的影响,利用微元法提出了加筋土挡墙墙背土压力计算模型,进而得到墙背的土压力强度和合力的理论公式。研究结果表明:文中提出的加筋土挡墙墙背侧向土压力强度公式模型较好地反映了土压力随墙高呈非线性分布的规律;土压力理论值随拉筋竖向间距的增加而增加,随拉筋拉力的增加而减小;主动破裂角随拉筋拉力的增加而增大,随拉筋垂直间距的增加而减小,且加筋后的破裂角比未加筋的大;土压力理论值比变系数法小且大于实测值。  相似文献   

14.
为了揭示车辆参数对列车碰撞爬车行为的影响规律,首先基于车轨耦合的基本思路,建立车辆模型和移动轨道模型,用非线性轮轨接触模型耦合车辆模型和移动轨道模型;非线性钩缓装置模型用于连接相邻的两个车辆模型;然后通过模拟两同型列车低速正面碰撞,获得了不同参数情况下车辆和轨道的动态响应;最后用车轮抬升量作为车辆碰撞爬车指标,分析了车轮抬升量对碰撞速度、车体质心高度和二系垂向刚度的灵敏度和相对灵敏度. 结果表明:在其他条件不变的情况下,当碰撞速度增大至27 km/h时,车轮抬升量陡增至36.5 mm;质心高度增大20%时,车轮抬升量增加41%;二系垂向刚度增大20%时,车轮抬升量减小16.6%;车轮抬升量随碰撞速度和质心高度的增大而增大,而随着二系垂向刚度的增大而减小;车轮抬升量对碰撞速度的灵敏度是非线性的;质心高度和二系垂向刚度的相对灵敏度分别为205%和?83%.   相似文献   

15.
重车重心限制高度是我国铁路基本技术标准之一,起着指导现场装车、保障行车安全的重要作用.本文分析了影响货物列车安全运行的因素,给出衡量车辆倾覆稳定性的主要指标,并论述了双层集装箱重车重心高度运行试验,遂渝线提速综合试验及胶济线列车交会试验的试验方案和试验过程.在分析试验数据的基础上,得出了双层集装箱重车重心高度为2400mm时能够保证行车安全的结论.此外,根据敞车、平车和棚车等主要车型在环形试验线和运营线路上进行的重车重心高度试验,分析了敞车和平车重车重心高度设置为2400mm、棚车重车重心高度设置为2200mm时的运行稳定性和平稳性的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号