首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
基于广义变分原理的铁路无缝道岔计算理论   总被引:3,自引:0,他引:3  
在继承现有试验成果的基础上,将广义变分原理应用于铁路无缝道岔结构体系的分析,提出了一种新的铁路无缝道岔计算理论,建立了较为完善的计算模型,在假设钢轨纵向位移函数的基础上,计算了无缝道岔结构体系各部分的能量,通过广义变分法建立了结构体系的平衡方程,编制了计算程序,分析了固定辙叉无缝道岔钢轨温度力与位移。  相似文献   

2.
轨道参数对无缝道岔组合效应的影响   总被引:3,自引:0,他引:3  
基于有限单元法,建立了组合无缝道岔钢轨纵向力及位移的力学计算模型,编制了计算软件,并以12号固定辙叉无缝道岔为例,分析了不同轨道参数对组合无缝道岔钢轨附加力及位移的影响,并与其对单组无缝道岔的影响作了对比分析。研究表明,道床纵向阻力对组合无缝道岔钢轨附加力及位移的影响要明显大于单组无缝道岔,扣件阻力和限位器间隔对组合道岔和单组道岔的影响差不多,扣件阻力对组合道岔的影响略大于单组道岔,而限位器间隔对组合道岔的影响略小于单组道岔,相比单组无缝道岔,保持组合道岔道床质量显得更为重要。  相似文献   

3.
60kg/m钢轨12号固定辙叉无缝道岔铺设的理论计算分析   总被引:3,自引:1,他引:2  
利用当量阻力计算理论,分析计算了目前使用的60kg/m钢轨、12号固定辙叉无缝道岔在不同铺设条件下的里轨伸缩位移、基本轨附加温度力、尖轨尖端位移、限位器螺栓剪力等,为该类型提速道岔在跨区间无缝线路的铺设和养护维修提供一些理论依据。  相似文献   

4.
简支梁桥上无缝道岔纵向力影响因素分析   总被引:4,自引:1,他引:3  
根据桥上无缝道岔纵向相互作用的特点,建立了道岔-桥梁-墩台一体化有限元计算模型,以18号道岔铺设在简支梁桥上为例,分析了钢轨温度、桥梁温度、桥梁跨度、支座布置形式、墩台刚度、辙跟传力部件结构及阻力参数等对简支梁桥上无缝道岔受力与变形的影响.计算结果表明,简支梁桥上的无缝道岔对线路和桥梁的影响范围仅限于与道岔相邻的2孔梁以内;应采用道岔里轨与简支梁伸缩位移方向相反的桥上无缝道岔布置方式;应适当增大道岔范围内桥墩的纵向刚度;桥上无缝道岔辙跟不宜采用间隔铁结构;18号道岔宜铺设在跨度32或48 m的简支梁桥上.  相似文献   

5.
无缝道岔铺设于长大连续梁桥上时的受力与变形分析   总被引:10,自引:0,他引:10  
建立了道岔-桥梁-墩台-体化计算模型。以60kg/m钢轨12号可动心轨道岔为例,分析了在长大连续梁桥上铺设有无缝道岔及伸缩调节器时,墩台及钢轨的受力与变形规律,探讨了无缝道岔布置方式、与伸缩调节器的距离等因素的影响,为桥上无缝道岔设计提供了理论依据。  相似文献   

6.
利用商业有限元软件,建立有砟轨道复式交分道岔的纵横垂向空间耦合有限元模型,根据东北地区某车站的轨温变化条件及道岔无缝化改造方案,对复式交分道岔无缝化后的主要力学特性与尖轨横向变形进行了计算分析.结果表明:在温度荷载作用下,道岔基本轨承受一定附加力作用,钢轨最大温度力出现在尖轨跟端的基本轨处;尖轨尖端纵向位移最大,基本轨纵向变形很小;基本轨与尖轨之间的轨距、轨向变化量最大值均位于尖轨尖端,密贴变化量最大值位于两牵引点之间;当岔外线路采用U75V钢轨时,复式交分道岔无缝化改造可行.  相似文献   

7.
用广义变分原理分析38号无缝道岔的研究   总被引:2,自引:0,他引:2  
将轨枕视为弹性地基上的有限长梁,用郭氏法对轨枕进行受力分析,建立了扣件阻力和轨枕变形曲线的关系;在继承现有试验成果的基础上,通过假设钢轨纵向位移函数,计算了无缝道岔结构各部分的能量,再利用广义变分原理建立了结构的非线性平衡方程组,最后用最速下降法求解该方程组,得出38号无缝道岔钢轨纵向力及位移等的分布规律。  相似文献   

8.
连续梁桥上无缝道岔断轨力计算分析   总被引:1,自引:0,他引:1  
钢轨在桥梁上的最不利位置处会因强度不足而折断,并自断口处收缩,产生较大的位移量,致使列车经过断缝时产生巨大的冲击作用,严重时危及行车安全,因此,在进行连续梁桥上铺设无缝道岔的检算时,必须考虑断轨力的影响。以一组60kg/m钢轨18#可动心轨道岔为例,采用有限单元法,利用“岔-梁-墩-体化”模型,计算分析了连续梁桥在无缝道岔断轨力作用下桥梁与钢轨的受力和变形特征。结果表明,钢轨在岔前方向折断时桥墩所受纵向力要大于钢轨在岔后方向折断时的受力,道岔里轨的伸缩对桥墩受力起着主要作用;道岔前后不同位置钢轨折断对断轨力的计算结果影响较大,应代入最不利结果进行检算。  相似文献   

9.
连续梁桥上无缝道岔伸缩力与位移计算   总被引:8,自引:0,他引:8  
将钢轨和梁体视为杆单元,轨枕视为梁单元,扣件阻力、道床阻力和桥墩刚度视为弹簧单元,建立了计算连续梁桥上无缝道岔伸缩力与位移的有限元力学模型,根据变分原理和“对号入座”法则建立了模型求解的非线性方程组,分析了道岔设计参数对桥上无缝道岔伸缩力和位移的影响。研究结果表明:伸缩调节器布置在道岔的后端,连续梁固定墩的纵向力可降低43.2%;增加连续梁固定墩纵向刚度有利于减小钢轨位移;连续梁固定支座的位置对系统的受力与变形有双重影响,实际设计时应综合考虑。  相似文献   

10.
无缝道岔现场测试分析   总被引:1,自引:0,他引:1  
为验证铺设无缝道岔的设计理论,对运用该理论设计铺设、使用一年的无缝道岔进行了附加温度力、位移的现场测试分析,其结果与理论计算基本吻合,从而证明了无缝道岔设计理论是正确的。  相似文献   

11.
本文建立了无缝道岔有限元分析模型.该模型考虑了各种阻力的非线性特性,以12#固定辙叉式无缝道岔为例,经过编程计算,得到了在不同轨温时,道岔上各钢轨的位移和纵向力;并讨论了扣件阻力、间隔铁阻力和道床阻力对钢轨位移的影响,计算发现三者对无缝道岔稳定性影响较大,并且均应取较大值对钢轨稳定性更为有利.通过与相关文献的对比,证实了本文结果的正确性.  相似文献   

12.
为系统分析纵连无砟轨道与桥上无缝道岔在制动力作用下的受力与变形规律,以武汉—广州客运专线雷大桥铺设博格纵连式无砟道岔为例,将客专18号渡线、纵连式无砟轨道、桥梁和墩台视为整体,建立了岔-板-梁-墩一体化计算模型,分析制动力作用下道岔、道床板、桥墩的受力和变形规律.分析结果表明:在制动力作用下,基本轨制动附加力及位移随道床板伸缩刚度的减小而增大,但板轨相对位移未超过1 mm;限位器和间隔铁的纵向力及心轨、尖轨处板轨相对位移受无砟轨道结构的影响较小,限位器未贴靠,间隔铁力最大未超过13 kN;道床板制动附加力随伸缩刚度的降低而减小,减小量最大达到3 832.9 kN,位移则增大,最多达到17.4 mm;道床板伸缩刚度和滑动层摩擦因数减小对桥墩受力不利;当滑动层摩擦因数μ≤0.2时,取消固结机构,桥墩纵向力减小值接近500 kN.  相似文献   

13.
高速铁路桥上无缝线路力学计算模型对比   总被引:1,自引:0,他引:1  
高速铁路桥梁、墩台及荷载均具有很强的空间力学特性,平面力学模型不能很好反映上述工况,有着较大的局限性。在吸收前人研究成果的基础上,建立了梁、轨纵向相互作用三维有限元空间力学计算模型,以秦沈客运专线32m多跨简支双线整孔箱形梁桥为例,对其进行了纵向力分析,并与传统平面力学模型进行了比较。对于伸缩附加力,平面模型与空间模型计算结果相差不大;对于挠曲附加力,平面模型与空间模型计算结果有较大的差别;当双线对称加载时,平面模型与空间模型制动附加力计算结果相差不大;在单线制动或双线对向制动时,平面模型的计算结果较多超过空间力学模型的计算结果,其计算结果是偏于保守的。对比分析表明空间力学模型更适宜于各种工况附加力的计算。  相似文献   

14.
小阻力扣件桥上无缝线路附加力   总被引:23,自引:4,他引:19  
在铁路桥梁上铺设无缝线路,为了降低梁跨结构和钢轨之间的相互作用力,往往采用小阻力扣件。在有碴桥上无缝线路采用小阻力扣件,在钢轨、轨枕及梁跨结构三者之间将产生较明显相对位移,以往的计算模型没有考虑轨枕和钢轨相对位移的影响,与有碴轨道小阻力扣件桥上无缝线路工况存在较大偏差。在吸收国内外研究成果的基础上,建立了一种能综合考虑钢轨、轨枕、梁体三者相互作用的有碴轨道小阻力扣件桥上无缝线路附加力计算力学模型,给出了算例,对不同力学模型计算结果作了对比。计算结果表明,新模型计算结果要小于既有模型,对于柔性墩台结构,差分尤其明显。不考虑轨枕位移,该模型也适用于无碴轨道小阻力扣件桥上无缝线路附加力计算,相比有碴桥,小阻力扣件无碴桥上无缝线路附加力有较大幅度增加。  相似文献   

15.
桥上无缝线路由于梁、轨的相互作用,钢轨会受到附加纵向力的作用,尤其在特大型长联连续梁桥上钢轨受到的纵向附加力更是不容忽视。本文建立了以轨道、桥梁、支座、墩台、基础为整体结构的纵向附加力计算空间有限元模型,计算了某特大型长联连续梁桥上钢轨的温度力。分析了:小阻力扣件铺设位置、铺设长度对钢轨伸缩附加力的影响;钢轨伸缩调节器铺设位置对钢轨温度力的影响。综合分析结果提出了该特大型长联连续梁桥上无缝线路的铺设方案。  相似文献   

16.
以象山港大桥斜拉桥为背景,通过实桥荷载试验分析,研究斜拉桥在静力荷载作用下结构的应力水平和变形。研究表明,在相当于设计汽车荷载水平的试验荷载作用下,大桥结构处于线弹性工作状态,变形增量与荷载增量呈线性关系;结构总体变形、应力、索力的理论值与实测结果较为接近;钢箱梁应力水平较低,受剪力滞效应、横坡及车轮局部效应等影响,钢箱梁顶、底板应力沿横截面呈纵向不均匀分布,尤其顶板U肋出现集中现象,这在桥梁健康监测中值得关注。  相似文献   

17.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

18.
刚性悬索加劲钢桁梁桥施工阶段力学性能(英文)   总被引:4,自引:0,他引:4  
采用空间有限元方法对刚性悬索加劲钢桁梁桥的施工全过程进行了仿真分析,通过变化边界条件与施加节点强制位移分别模拟结构体系转换和内力调整,采用释放纵梁一端的纵向刚度来模拟纵梁长圆孔的影响,对比了6种主要工况下结构的内力和位移.分析结果表明:通过体系转化和内力调整,能有效地使刚性悬索与钢桁梁共同受力;横、纵向内力调整能使结构的中边桁与中边跨的内力差异减小到5%以内;在纵梁两端设置长圆孔能有效避免其过早参与纵向受力,仅使整体结构的内力与挠度增加10%左右,但使得纵梁与横梁的最大组合压应力分别从-271.1、-505.8 MPa降低到-63.0、-178.0 MPa,小于材料的容许应力210 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号