首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 468 毫秒
1.
为了研究碰撞对山区高墩桥动力响应的影响,以某一大跨度高墩桥体系为原型,充分考虑了碰撞过程中的刚度变化、能量耗散以及桥墩的非线性行为,基于OpenSess平台建立了两种典型桥跨结构的弹塑性动力分析模型.在此基础上,利用所选的天然地震波和人工地震波对比分析了碰撞效应对山区高墩桥弹塑性动力响应的影响.研究结果表明:碰撞会对高墩桥结构的动力响应产生较为明显的影响,特别是场地条件较差时,其最大改变率为15.86%,桥墩与主梁的连接方式会进一步改变碰撞对桥墩变形的影响程度;相邻结构动力特性差异越大,高墩桥体系发生碰撞的概率就越大,但碰撞次数的增加可能会对桥墩变形起到限制作用,降低桥墩的响应,在确定山区高墩桥体系相邻结构周期比时,既要考虑相邻结构动力特性差异对碰撞概率的影响,还应考虑其对碰撞效应的影响;高墩桥的梁-桥台碰撞主要受地震动作用大小的影响,地震动的强度和相邻结构动力特性的差异均会对梁-梁碰撞产生影响,在对高墩桥进行减撞防撞设计时,应针对不同的碰撞位置采取不同的措施.   相似文献   

2.
为了研究碰撞对山区高墩桥动力响应的影响,以某一大跨度高墩桥体系为原型,充分考虑了碰撞过程中的刚度变化、能量耗散以及桥墩的非线性行为,基于OpenSess平台建立了两种典型桥跨结构的弹塑性动力分析模型.在此基础上,利用所选的天然地震波和人工地震波对比分析了碰撞效应对山区高墩桥弹塑性动力响应的影响.研究结果表明:碰撞会对高墩桥结构的动力响应产生较为明显的影响,特别是场地条件较差时,其最大改变率为15.86%,桥墩与主梁的连接方式会进一步改变碰撞对桥墩变形的影响程度;相邻结构动力特性差异越大,高墩桥体系发生碰撞的概率就越大,但碰撞次数的增加可能会对桥墩变形起到限制作用,降低桥墩的响应,在确定山区高墩桥体系相邻结构周期比时,既要考虑相邻结构动力特性差异对碰撞概率的影响,还应考虑其对碰撞效应的影响;高墩桥的梁-桥台碰撞主要受地震动作用大小的影响,地震动的强度和相邻结构动力特性的差异均会对梁-梁碰撞产生影响,在对高墩桥进行减撞防撞设计时,应针对不同的碰撞位置采取不同的措施.  相似文献   

3.
为了研究碰撞对山区高墩桥动力响应的影响,以某一大跨度高墩桥体系为原型,充分考虑了碰撞过程中的刚度变化、能量耗散以及桥墩的非线性行为,基于OpenSess平台建立了两种典型桥跨结构的弹塑性动力分析模型.在此基础上,利用所选的天然地震波和人工地震波对比分析了碰撞效应对山区高墩桥弹塑性动力响应的影响.研究结果表明:碰撞会对高墩桥结构的动力响应产生较为明显的影响,特别是场地条件较差时,其最大改变率为15.86%,桥墩与主梁的连接方式会进一步改变碰撞对桥墩变形的影响程度;相邻结构动力特性差异越大,高墩桥体系发生碰撞的概率就越大,但碰撞次数的增加可能会对桥墩变形起到限制作用,降低桥墩的响应,在确定山区高墩桥体系相邻结构周期比时,既要考虑相邻结构动力特性差异对碰撞概率的影响,还应考虑其对碰撞效应的影响;高墩桥的梁-桥台碰撞主要受地震动作用大小的影响,地震动的强度和相邻结构动力特性的差异均会对梁-梁碰撞产生影响,在对高墩桥进行减撞防撞设计时,应针对不同的碰撞位置采取不同的措施.  相似文献   

4.
为了分析地震动的行波效应对山区大跨连续刚构桥易损性的影响,以西南地区某高墩大跨连续刚构桥为研究对象,采用谱兼容的方法选取了20条地震记录对桥梁结构进行了一致激励和多点激励下的增量动力分析,并得到其易损性曲线.研究结果表明:墩高越高,桥墩相对位移越大,最高墩的相对位移为矮墩的1.03~2.81倍,但矮墩发生损伤的概率要大于高墩,在抗震设计中应得到重视;与一致激励相比较,考虑行波效应时,矮墩发生轻微损伤和中等损伤的概率降低,高墩发生轻微损伤和中等损伤的概率增大,但行波效应会同时增加矮墩和高墩发生严重损伤的概率,因此在高墩桥的抗震设计中,特别是在高烈度地区,应考虑行波效应对桥梁结构的影响.  相似文献   

5.
为研究多点多维地震动作用下大跨度连续梁拱桥的动力响应,以我国南方某主跨为139 m的钢管混凝土连续梁拱桥为研究对象,基于有限元软件OpenSEES建立桥梁的三维有限元分析模型,人工合成空间非一致地震动,探究地震动的失相干程度、场地条件及行波波速对桥梁动力响应的影响. 研究结果表明:地震波的空间变异性效应会对连续梁拱桥的地震响应产生明显影响,仅考虑一致地震动激励会高估桥梁结构的地震响应;场地效应对桥梁地震响应的影响规律最为突出,随着支撑点处的场地越来越松软,桥梁各个部位的内力及位移响应均大幅增加;地震动的失相干效应越明显,桥梁拱肋的内力越大,位移越小;行波效应对桥梁结构的地震反应没有较为明确的影响规律,但不可忽略其作用,仅考虑行波效应会严重低估下部结构的地震响应;在大跨度桥梁结构的地震响应分析中,应着重考虑地震动的空间变异性效应,并且准确衡量各因素的作用.   相似文献   

6.
大跨度斜拉桥多维多点随机地震激励响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究大跨度斜拉桥地震激励下的平稳随机响应规律,以某大跨度斜拉桥为例,用ANSYS软件建立了三维有限元分析模型.考虑地震动的多维性、行波效应、部分相干效应及局部场地效应对主梁及主塔位移和内力随机响应的影响,用该模型分析了大跨度斜拉桥在多维多点地震激励下的响应.研究结果表明:相对于一致激励,大跨度斜拉桥在多维多点激励下的结构响应显著增大,主梁的纵向位移增大了约2.3倍,①号塔顶的纵向位移和塔底横向弯矩分别增大了约2.2和2.3倍;仅考虑一致地震激励不能保证大跨度斜拉桥的结构安全;考虑行波效应时斜拉桥的地震响应减小,相干效应较小可忽略,软场地条件下结构的地震响应更大.   相似文献   

7.
为了研究脉冲型地震作用下钢管混凝土拱桥的抗震性能,以一座钢管混凝土拱桥的实际工程为例,采用时程分析方法系统分析了其在非脉冲和脉冲型地震作用下的抗震性能. 首先,基于PEER地震衰减模型并采用谱兼容的方法选取了符合不同场地条件且具有不同脉冲周期的天然地震记录;其次,在综合考虑有无脉冲、脉冲周期以及地震动多维性的基础上,对钢管混凝土拱桥的抗震性能进行了对比分析. 研究结果表明:脉冲型地震动会对结构响应产生较为明显的影响,脉冲效应对结构响应的放大作用在0.96~19.88倍之间,桥梁修建处的场地条件越好放大作用越明显;脉冲周期的不同也会对结构响应产生不可忽略的影响,结构响应的改变率在10~133%之间,脉冲周期越小脉冲效应对结构响应的放大作用就越明显;与非脉冲型地震动相比,地震动多维性对脉冲型地震作用下的结构响应影响较小,但随着脉冲周期的减小,地震动多维性对结构响应的影响变大. 因此,在对断层附近的钢管混凝土拱桥进行抗震设计时不但要考虑有无脉冲的影响,还需要考虑脉冲周期、地震动多维性以及桥梁修建处场地条件的影响,以免错误地估计结构响应.   相似文献   

8.
对某一大跨度桥梁桥址处地质、地形等局部场地进行模拟及地震反应分析,得出桥梁各个支撑处的地震动参数,再对桥梁进行多点激励地震反应分析,并将结果与一致地震动作用下的桥梁地震响应对比分析。考虑局部场地效应的多点激励作用与一致激励作用下得出的桥梁地震响应有较大差异,并对倾斜岩面场地处的桥梁抗震设计提出一些建议。  相似文献   

9.
为了研究不同地震动强度作用下高墩桥梁的碰撞可靠度的不同,在频域范围内提出了一种以虚拟激励法为基础的动力可靠度计算方法,依托某高墩大跨度桥梁为工程背景,分析了高墩桥梁在不同地震强度下的碰撞可靠度.选择反应谱的水平加速度作为地震强度衡量指标,且将不同强度指标的反应谱转化为相应的功率谱;利用虚拟激励法求解随机振动方程,得到结构响应的均值与均方差值,再基于Davenport理论获得结构峰值响应的期望和标准差;根据首次超越理论计算梁体碰撞可靠度.研究表明:地震动加速度小于0.22g时,梁体之间不发生碰撞,动力可靠度为1.0;加速度大于0.22g时,梁体碰撞动力可靠度下降明显,即在强震作用下,梁体发生碰撞.   相似文献   

10.
利用有限元分析软件,结合工程实际建立了一座3跨不对称高墩大跨连续刚构桥的空间抗震有限元模型,通过时程分析法分别计算了行波效应及一致激励下桥墩的地震响应。结果显示:小跨径T构的墩将分担较大的纵向内力,大跨径T构的墩将分担较大的横向内力;考虑行波效应后,结构的内力均有不同程度的增大,而结构的位移却呈现减少的趋势,结构的振动周期延长。  相似文献   

11.
高铁简支梁桥横向地震碰撞效应及减震研究   总被引:2,自引:0,他引:2  
为了研究高铁简支梁桥横向地震碰撞效应及减隔震装置的减碰效果,以7跨32 m标准跨径简支梁桥为例,通过试验测定挡块的实际力-变形曲线,并基于SAP2000建立了考虑地震碰撞效应的有限元模型.在此基础之上,分析了轨道系统、挡块-垫石初始间距及挡块钢板厚度对桥梁地震响应的影响,并进一步探讨了橡胶垫层、铅芯橡胶支座(LRB)、摩擦摆支座(FPB)、高阻尼橡胶支座(HDR)及液体粘滞阻尼器的减碰效果. 研究结果表明:轨道系统的约束作用会显著改变各桥跨之间的地震力分配;在所考虑的最大地震激励下,碰撞力峰值达2.18 MN,挡块的非线性效应显著;对于本文算例而言,挡块-垫石间距设为3 cm,挡块钢板厚度取32 mm是一个较为合理的配置;减隔震装置能够有效地改善桥梁结构抗震性能,且其防碰减震效果受地震波频谱特性及自身作用机理的影响,其中,FPB支座具有较强的适用性,且安装FPB支座后各桥跨之间的地震力分配更加均匀.   相似文献   

12.
为了研究近断层脉冲地震作用下桥梁非线性地震响应极值分布,进行小失效概率下的桥梁动力可靠度精确计算,提出了一种有效的近断层脉冲地震作用下桥梁结构非线性地震响应极值分布分析方法. 首先考虑桥梁结构的非线性和地震动的不确定性,采用拉丁超立方抽样对近断层脉冲地震动随机参数和结构随机参数进行随机抽样,通过模拟的高频地震动均方值和与精确值的相对误差确定出所需要的样本数量;其次以合成的近断层脉冲地震动作为地震激励,通过时程分析对结构非线性动力方程进行求解,从而得到结构非线性地震响应极值样本,再采用改进的分数阶矩最大熵原理获得结构非线性地震响应的极值分布;最后通过非线性单自由度系统和三层非线性剪切框架验证了该方法的有效性. 研究结果表明:该方法不仅能够有效的模拟近断层脉冲地震作用时,桥梁结构与地震动双重不确定性影响下的动力响应极值分布,更能在兼顾效率和计算精度时,精确估计桥梁结构非线性地震响应极值的尾部分布,能够为桥梁结构非线性动力可靠度评估提供一种有效的途径.   相似文献   

13.
为了研究近断层地震的多脉冲效应对不规则高墩大跨桥梁非线性地震响应的影响,首先,采用眼观识别的方法选取了典型的多脉冲、单脉冲和非脉冲3组地震动;然后,采用小波变换识别方法和能量识别方法对其脉冲性进行识别,研究了脉冲地震动识别方法对多脉冲地震动的适用性;最后,以某大跨度高墩桥梁为例,基于OpenSees建立了其非线性有限元模型,对其进行了非线性地震响应分析,对比研究了近断层多脉冲地震动及单脉冲地震动对不规则高墩桥梁非线性地震响应的影响. 研究结果表明:现有的近断层脉冲识别方法只适用于速度时程中只含有一个主脉冲的地震动,对于多脉冲地震动,其失效的可能性非常大;近断层脉冲地震动对不规则高墩桥梁具有更强的破坏性,特别是在多脉冲地震作用下,1号、2号两个高墩的墩顶位移需求分别增加了118.9%和109.6%,墩底弯矩和墩底曲率也有明显的增大;近场多脉冲地震作用下主梁的碰撞次数增大了3~5倍,碰撞力也会增大2~3倍,主梁更容易发生严重的碰撞破坏,在抗震设计时应采取适当防撞措施.   相似文献   

14.
在强震作用下,桥梁上、下部结构由于动力特性的不同而发生不同相振动,从而引起梁体与挡块间的非线性碰撞。汶川大地震中,大量公路桥梁遭到严重破坏,横向抗震挡块破坏尤其严重,其中部分是由于横向碰撞而引起。针对这种碰撞现象,对正交简支梁桥、连续梁桥、斜交桥及高速铁路桥梁的横向碰撞反应进行了回顾和总结,并介绍了横桥向防撞措施及震后加固技术的研究现状,同时指出目前我国在这方面亟需解决的问题和进一步研究的方向。  相似文献   

15.
为了充分评估空心薄壁高墩大跨桥梁结构的抗震性能, 以中国西部某四跨高墩刚构-连续组合体系桥梁作为研究对象, 基于三维地震易损性分析方法, 计入竖向地震动的影响, 结合现行桥梁抗震设计规范, 采用增量动力分析方法讨论了水平地震动入射角对桥梁构件地震易损性的影响; 依据一阶可靠度理论分析了地震动入射角对桥梁结构系统易损性的影响规律。研究结果表明: 2#、3#刚构桥墩的弯曲和剪切易损性云图与1#、4#悬臂墩的弯曲和剪切易损性云图差异明显, 桥墩弯曲和剪切的地震易损性不仅与地震动入射角有关, 还与桥墩结构形式有关; 支座在轻微损伤、中度损伤、重度损伤及完全损伤状态下的损伤概率分布相似, 地面峰值加速度为0.4g时, 最大损伤概率的地震动入射角为0°和180°, 当地面峰值加速度大于0.6g时, 轻微损伤和中度损伤的最不利入射角为0~180°, 支座变形的最不利地震动输入方向主要为纵桥向和横桥向。由此可见, 各关键构件的不同损伤指标下的损伤概率随地震强度、方向变化的规律各不相同; 不同损伤指标下系统及各构件的最不利地震动入射角及其区间数量和范围也各不相同; 仅讨论纵桥向或横桥向构件地震易损性不能合理评估桥梁结构的实际抗震需求, 采用三维地震易损性分析方法能准确定位最不利地震动入射角, 实现高墩大跨桥梁结构抗震性能的准确评估。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号